二者的联系:
一个线程可以创建和撤销另一个线程同一个进程中的多个线程之间可以并发执行。
线程是一个更加接近于执行体的概念,它可以与同进程中的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。
二者的区别:
主要差别在于它们是不同的 *** 作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。
线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发 *** 作,只能用线程,不能用进程。
简而言之,一个程序至少有一个进程,一个进程至少有一个线程。
线程的划分尺度小于进程,使得多线程程序的并发性高。
另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。
线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。
从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但 *** 作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。
进程:运行中的程序,-->执行过程称之为进程。线程:线程是轻量级的进程,是进程中的一条执行序列,一个进程至少有一条线程。 多线程优点:①无需跨进程边界②程序逻辑和控制方式简单③所有线程可以直接共享内存和变量④线程方式消耗的总资源比进程少。多进程优点:①每个进程相互独立,不影响主程序的稳定性,子进程崩溃没关系②通过增加CPU就可以容易扩充性能③可以尽量减少线程加锁/解锁的影响,极大提高性能。多线程缺点:①每条线程与主程序共用地址空间,大小受限②线程之间的同步和加锁比较麻烦③一个线程的崩溃可能影响到整个程序的稳定性④到达一定的线程数之后,即使在增加CPU也无法提高性能。多进程缺点:①逻辑控制复杂,需要和主程序交互②需要跨进程边界,如果有大数据传输,不适合③多进程调度开销比较大。Linux系统中多进程和多线程的区别是什么?1、多进程中数据共享复杂、同步简单而多线程中数据共享简单、同步复杂。2、多进程占用内存多、切换复杂、速度慢、CPU利用率低而多线程占用内存少、切换简单、CPU利用率高。3、多进程的编程简单、调试简单而多线程的编程复杂、调试复杂。1、物理CPU数:机器主板上实际插入的cpu数量,比如说你的主板上安装了一块8核CPU,那么物理CPU个数就是1个,所以物理CPU个数就是主板上安装的CPU个数。
2、物理CPU核数:单个物理CPU上面有多个核,物理CPU核数=物理CPU数✖️单个物理CPU的核
3、逻辑CPU核数:一般情况,我们认为一颗CPU可以有多个核,加上intel的超线程技术(HT), 可以在逻辑上再分一倍数量的CPU core出来。逻辑CPU核数=物理CPU数✖️单个物理CPU的核*2
4、超线程技术(Hyper-Threading):就是利用特殊的硬件指令,把两个逻辑CPU模拟成两个物理CPU,实现多核多线程。我们常听到的双核四线程/四核八线程指的就是支持超线程技术的CPU。
1、并行:两件(多件)事情在同一时刻一起发生。
2、并发:两件(多件)事情在同一时刻只能有一个发生,由于CPU快速切换,从而给人的感觉是同时进行。
3、进程和线程
进程是资源分配的最小单位,一个程序有至少一个进程。线程是程序执行的最小单位。一个进程有至少一个线程。
线程之间的通信更方便,同一进程下的线程共享全局变量、静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间。
4、单核多线程:单核CPU上运行多线程, 同一时刻只有一个线程在跑,系统进行线程切换,系统给每个线程分配时间片来执行,看起来就像是同时在跑, 但实际上是每个线程跑一点点就换到其它线程继续跑。
5、多核多线程:每个核上各自运行线程,同一时刻可以有多个线程同时在跑。
1、对于单核:多线程和多进程的多任务是在单cpu交替执行(时间片轮转调度,优先级调度等),属于并发
2、对于多核:同一个时间多个进程运行在不同的CPU核上,或者是同一个时间多个线程能分布在不同的CPU核上(线程数小于内核数),属于并行。
3、上下文切换:上下文切换指的是内核( *** 作系统的核心)在CPU上对进程或者线程进行切换。上下文切换过程中的信息被保存在进程控制块(PCB-Process Control Block)中。PCB又被称作切换帧(SwitchFrame)。上下文切换的信息会一直被保存在CPU的内存中,直到被再次使用。
CPU 亲和性(affinity)就是进程要在某个给定的 CPU 上尽量长时间地运行而不被迁移到其他处理器的倾向性。这样可以减少上下文切换的次数,提高程序运行性能。可分为:自然亲和性和硬亲和性
1、自然亲和性:就是进程要在指定的 CPU 上尽量长时间地运行而不被迁移到其他处理器,Linux 内核进程调度器天生就具有被称为 软 CPU 亲和性(affinity) 的特性,这意味着进程通常不会在处理器之间频繁迁移。这种状态正是我们希望的,因为进程迁移的频率小就意味着产生的负载小。Linux调度器缺省就支持自然CPU亲和性(natural CPU affinity): 调度器会试图保持进程在相同的CPU上运行。
2、硬亲和性:简单来说就是利用linux内核提供给用户的API,强行将进程或者线程绑定到某一个指定的cpu核运行。Linux硬亲和性指定API:taskset .
taskset [options] mask command [arg]...
taskset [options] -p [mask] pid
taskset 命令用于设置或者获取一直指定的 PID 对于 CPU 核的运行依赖关系。也可以用 taskset 启动一个命令,直接设置它的 CPU 核的运行依赖关系。
CPU 核依赖关系是指,命令会被在指定的 CPU 核中运行,而不会再其他 CPU 核中运行的一种调度关系。需要说明的是,在正常情况下,为了系统性能的原因,调度器会尽可能的在一个 CPU 核中维持一个进程的执行。强制指定特殊的 CPU 核依赖关系对于特殊的应用是有意义的
CPU 核的定义采用位定义的方式进行,最低位代表 CPU0,然后依次排序。这种位定义可以超过系统实际的 CPU 总数,并不会存在问题。通过命令获得的这种 CPU 位标记,只会包含系统实际 CPU 的数目。如果设定的位标记少于系统 CPU 的实际数目,那么命令会产生一个错误。当然这种给定的和获取的位标记采用 16 进制标识。
0x00000001
代表 #0 CPU
0x00000003
代表 #0 和 #1 CPU
0xFFFFFFFF
代表 #0 到 #31 CPU
-p, --pid
对一个现有的进程进行 *** 作,而不是启动一个新的进程
-c, --cpu-list
使用 CPU 编号替代位标记,这可以是一个列表,列表中可以使用逗号分隔,或者使用 "-" 进行范围标记,例如:0,5,7,9
-h, --help
打印帮助信息
-V, --version
打印版本信息
如果需要设定,那么需要拥有 CAP_SYS_NICE 的权限;如果要获取设定信息,没有任何权限要求。
taskset 命令属于 util-linux-ng 包,可以使用 yum 直接安装。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)