X86指令集的内容有哪些?

X86指令集的内容有哪些?,第1张

x86汇编指令

数据传输指令 它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据.

1. 通用数据传送指令.

MOV传送字或字节.

MOVSX 先符号扩展,再传送.

MOVZX 先零扩展,再传送.

MOVSX reg16,r/m8 o16 0F BE /r [386]

MOVSX reg32,r/m8 o32 0F BE /r [386]

MOVSX reg32,r/m16 o32 0F BF /r [386]

MOVZX reg16,r/m8 o16 0F B6 /r [386]

MOVZX reg32,r/m8 o32 0F B6 /r [386]

MOVZX reg32,r/m16 o32 0F B7 /r [386]

PUSH把字压入堆栈.

POP把字d出堆栈.

PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.

POPA把DI,SI,BP,SP,BX,DX,CX,AX依次d出堆栈.

PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.

POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次d出堆栈.

BSWAP 交换32位寄存器里字节的顺序

XCHG交换字或字节.( 至少有一个 *** 作数为寄存器,段寄存器不可作为 *** 作数)

CMPXCHG 比较并交换 *** 作数.( 第二个 *** 作数必须为累加器AL/AX/EAX )

XADD先交换再累加.( 结果在第一个 *** 作数里 )

XLAT字节查表转换.

—— BX 指向一张 256 字节的表的起点, AL 为表的索引值 (0-255,即

0-FFH)返回 AL 为查表结果. ( [BX+AL]->AL )

2. 输入输出端口传送指令.

IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )

OUTI/O端口输出. ( 语法: OUT {端口号│DX},累加器 )

输入输出端口由立即方式指定时, 其范围是 0-255由寄存器 DX 指定时,

其范围是 0-65535.

3. 目的地址传送指令.

LEA装入有效地址.

例: LEA DX,string 把偏移地址存到DX.

LDS传送目标指针,把指针内容装入DS.

例: LDS SI,string 把段地址:偏移地址存到DS:SI.

LES传送目标指针,把指针内容装入ES.

例: LES DI,string 把段地址:偏移地址存到ES:DI.

LFS传送目标指针,把指针内容装入FS.

例: LFS DI,string 把段地址:偏移地址存到FS:DI.

LGS传送目标指针,把指针内容装入GS.

例: LGS DI,string 把段地址:偏移地址存到GS:DI.

LSS传送目标指针,把指针内容装入SS.

例: LSS DI,string 把段地址:偏移地址存到SS:DI.

4. 标志传送指令.

LAHF标志寄存器传送,把标志装入AH.

SAHF标志寄存器传送,把AH内容装入标志寄存器.

PUSHF 标志入栈.

POPF标志出栈.

PUSHD 32位标志入栈.

POPD32位标志出栈.

二、算术运算指令

———————————————————————————————————————

ADD加法.

ADC带进位加法.

INC加 1.

AAA加法的ASCII码调整.

DAA加法的十进制调整.

SUB减法.

SBB带借位减法.

DEC减 1.

NEC求反(以 0 减之).

CMP比较.(两 *** 作数作减法,仅修改标志位,不回送结果).

AAS减法的ASCII码调整.

DAS减法的十进制调整.

MUL无符号乘法.

IMUL整数乘法.

以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算),

AAM乘法的ASCII码调整.

DIV无符号除法.

IDIV整数除法.

以上两条,结果回送:

商回送AL,余数回送AH, (字节运算)

或 商回送AX,余数回送DX, (字运算).

AAD除法的ASCII码调整.

CBW字节转换为字. (把AL中字节的符号扩展到AH中去)

CWD字转换为双字. (把AX中的字的符号扩展到DX中去)

CWDE字转换为双字. (把AX中的字符号扩展到EAX中去)

CDQ双字扩展.(把EAX中的字的符号扩展到EDX中去)

三、逻辑运算指令

———————————————————————————————————————

AND与运算.

OR 或运算.

XOR异或运算.

NOT取反.

TEST测试.(两 *** 作数作与运算,仅修改标志位,不回送结果).

SHL逻辑左移.

SAL算术左移.(=SHL)

SHR逻辑右移.

SAR算术右移.(=SHR)

ROL循环左移.

ROR循环右移.

RCL通过进位的循环左移.

RCR通过进位的循环右移.

以上八种移位指令,其移位次数可达255次.

移位一次时, 可直接用 *** 作码. 如 SHL AX,1.

移位>1次时, 则由寄存器CL给出移位次数.

如 MOV CL,04

SHL AX,CL

四、串指令

———————————————————————————————————————

DS:SI 源串段寄存器 :源串变址.

ES:DI 目标串段寄存器:目标串变址.

CX 重复次数计数器.

AL/AX 扫描值.

D标志 0表示重复 *** 作中SI和DI应自动增量1表示应自动减量.

Z标志 用来控制扫描或比较 *** 作的结束.

MOVS串传送.

( MOVSB 传送字符.MOVSW 传送字.MOVSD 传送双字. )

CMPS串比较.

( CMPSB 比较字符.CMPSW 比较字. )

SCAS串扫描.

把AL或AX的内容与目标串作比较,比较结果反映在标志位.

LODS装入串.

把源串中的元素(字或字节)逐一装入AL或AX中.

( LODSB 传送字符.LODSW 传送字.LODSD 传送双字. )

STOS保存串.

是LODS的逆过程.

REP当CX/ECX<>0时重复.

REPE/REPZ 当ZF=1或比较结果相等,且CX/ECX<>0时重复.

REPNE/REPNZ当ZF=0或比较结果不相等,且CX/ECX<>0时重复.

REPC 当CF=1且CX/ECX<>0时重复.

REPNC 当CF=0且CX/ECX<>0时重复.

五、程序转移指令

———————————————————————————————————————

1>无条件转移指令 (长转移)

JMP无条件转移指令

CALL过程调用

RET/RETF过程返回.

2>条件转移指令 (短转移,-128到+127的距离内)

( 当且仅当(SF XOR OF)=1时,OP1 JA/JNBE 不小于或不等于时转移.

JAE/JNB 大于或等于转移.

JB/JNAE 小于转移.

JBE/JNA 小于或等于转移.

以上四条,测试无符号整数运算的结果(标志C和Z).

JG/JNLE 大于转移.

JGE/JNL 大于或等于转移.

JL/JNGE 小于转移.

JLE/JNG 小于或等于转移.

以上四条,测试带符号整数运算的结果(标志S,O和Z).

JE/JZ 等于转移.

JNE/JNZ 不等于时转移.

JC 有进位时转移.

JNC无进位时转移.

JNO不溢出时转移.

JNP/JPO 奇偶性为奇数时转移.

JNS符号位为 "0" 时转移.

JO 溢出转移.

JP/JPE 奇偶性为偶数时转移.

JS 符号位为 "1" 时转移.

3>循环控制指令(短转移)

LOOPCX不为零时循环.

LOOPE/LOOPZCX不为零且标志Z=1时循环.

LOOPNE/LOOPNZ CX不为零且标志Z=0时循环.

JCXZCX为零时转移.

JECXZ ECX为零时转移.

4>中断指令

INT中断指令

INTO溢出中断

IRET中断返回

5>处理器控制指令

HLT处理器暂停, 直到出现中断或复位信号才继续.

WAIT当芯片引线TEST为高电平时使CPU进入等待状态.

ESC转换到外处理器.

LOCK封锁总线.

NOP空 *** 作.

STC置进位标志位.

CLC清进位标志位.

CMC进位标志取反.

STD置方向标志位.

CLD清方向标志位.

STI置中断允许位.

CLI清中断允许位.

六、伪指令

———————————————————————————————————————

DW 定义字(2字节).

PROC定义过程.

ENDP过程结束.

SEGMENT 定义段.

ASSUME 建立段寄存器寻址.

ENDS段结束.

END程序结束.

七、寄存器

1. Register usage in 32 bit Windows

Function parameters are passed on the stack according to the calling conventions listed on

page 13. Parameters of 32 bits size or less use one DWORD of stack space. Parameters

bigger than 32 bits are stored in little-endian form, i.e. with the least significant DWORD at the

lowest address, and DWORD aligned.

Function return values are passed in registers in most cases. 8-bit integers are returned in

AL, 16-bit integers in AX, 32-bit integers, pointers, and Booleans in EAX, 64-bit integers in

EDX:EAX, and floating-point values in ST(0). Structures and class objects not exceeding

64 bits size are returned in the same way as integers, even if the structure contains floating

point values. Structures and class objects bigger than 64 bits are returned through a pointer

passed to the function as the first parameter and returned in EAX. Compilers that don\'t

support 64-bit integers may return structures bigger than 32 bits through a pointer. The

Borland compiler also returns structures through a pointer if the size is not a power of 2.

Registers EAX, ECX and EDX may be changed by a procedure. All other general-purpose

registers (EBX, ESI, EDI, EBP) must be saved and restored if they are used. The value of

ESP must be divisible by 4 at all times, so don\'t push 16-bit data on the stack. Segment

registers cannot be changed, not even temporarily. CS, DS, ES, and SS all point to the flat

segment group. FS is used for a thread environment block. GS is unused, but reserved.

Flags may be changed by a procedure with the following restrictions: The direction flag is 0

by default. The direction flag may be set temporarily, but must be cleared before any call or

return. The interrupt flag cannot be cleared. The floating-point register stack is empty at the

entry of a procedure and must be empty at return, except for ST(0) if it is used for return

value. MMX registers may be changed by the procedure and if so cleared by EMMS before

returning and before calling any other procedure that may use floating-point registers. All

XMM registers can be modified by procedures. Rules for passing parameters and return

values in XMM registers are described in Intel\'s application note AP 589 "Software

Conventions for Streaming SIMD Extensions". A procedure can rely on EBX, ESI, EDI, EBP

and all segment registers being unchanged across a call to another procedure.

2. Register usage in Linux

The rules for register usage in Linux appear to be almost the same as for 32-bit windows.

Registers EAX, ECX, and EDX may be changed by a procedure. All other general-purpose

registers must be saved. There appears to be no rule for the direction flag. Function return

values are transferred in the same way as under Windows. Calling conventions are the

same, except for the fact that no underscore is prefixed to public names. I have no

information about the use of FS and GS in Linux. It is not difficult to make an assembly

function that works under both Windows and Linux, if only you take these minor differences

into account.

八、位 *** 作指令,处理器控制指令

1.位 *** 作指令,8086新增的一组指令,包括位测试,位扫描。BT,BTC,BTR,BTS,BSF,BSR

1.1 BT(Bit Test),位测试指令,指令格式:

BT OPRD1,OPRD2,规则: *** 作作OPRD1可以是16位或32位的通用寄存器或者存储单元。 *** 作数OPRD2必须是8位立即数或者是与OPRD1 *** 作数长度相等的通用寄存器。如果用OPRD2除以OPRD1,假设商存放在Divd中,余数存放在Mod中,那么对OPRD1 *** 作数要进行测试的位号就是Mod,它的主要功能就是把要测试位的值送往CF,看几个简单的例子:

1.2 BTC(Bit Test And Complement),测试并取反用法和规则与BT是一样,但在功能有些不同,它不但将要测试位的值送往CF,并且还将该位取反。

1.3 BTR(Bit Test And Reset),测试并复位,用法和规则与BT是一样,但在功能有些不同,它不但将要测试位的值送往CF,并且还将该位复位(即清0)。

1.4 BTS(Bit Test And Set),测试并置位,用法和规则与BT是一样,但在功能有些不同,它不但将要测试位的值送往CF,并且还将该位置位(即置1)。

1.5 BSF(Bit Scan Forward),顺向位扫描,指令格式:BSF OPRD1,OPRD2,功能:将从右向左(从最低位到最高位)对OPRD2 *** 作数进行扫描,并将第一个为1的位号送给 *** 作数OPRD1。 *** 作数OPRD1,OPRD2可以是16位或32位通用寄存器或者存储单元,但OPRD1和OPRD2 *** 作数的长度必须相等。

1.6 BSR(Bit Scan Reverse),逆向位扫描,指令格式:BSR OPRD1,OPRD2,功能:将从左向右(从最高位到最低位)对OPRD2 *** 作数进行扫描,并将第一个为1的位号送给 *** 作数OPRD1。 *** 作数OPRD1,OPRD2可以是16位或32位通用寄存器或存储单元,但OPRD1和OPRD2 *** 作数的长度必须相等。

1.7 举个简单的例子来说明这6条指令:

AA DW 1234H,5678H

BB DW 9999H,7777H

MOV EAX,12345678H

MOV BX,9999H

BT EAX,8CF=0,EAX保持不变

BTC EAX,8CF=0,EAX=12345778H

BTR EAX,8CF=0,EAX=12345678H

BTS EAX,8CF=0,EAX=12345778H

BSF AX,BXAX=0

BSR AX,BXAX=15

BT WORD PTR [AA],4CF=1,[AA]的内容不变

BTC WORD PTR [AA],4CF=1,[AA]=1223H

BTR WORD PTR [AA],4CF=1,[AA]=1223H

BTS WORD PTR [AA],4CF=1,[AA]=1234H

BSF WORD PTR [AA],BX[AA]=0

BSR WORD PTR [AA],BX[AA]=15(十进制)

BT DWORD PTR [BB],12CF=1,[BB]的内容保持不变

BTC DWORD PTR [BB],12CF=1,[BB]=76779999H

BTR DWORD PTR [BB],12CF=1,[BB]=76779999H

BTS DWORD PTR [BB],12CF=1,[BB]=77779999H

BSF DWORD PTR [BB],12[BB]=0

BSR DWORD PTR [BB],12[BB]=31(十进制)

2.处理器控制指令

处理器控制指令主要是用来设置/清除标志,空 *** 作以及与外部事件同步等。

2.1 CLC,将CF标志位清0。

2.2 STC,将CF标志位置1。

2.3 CLI,关中断。

2.4 STI,开中断。

2.5 CLD,清DF=0。

2.6 STD,置DF=1。

2.7 NOP,空 *** 作,填补程序中的空白区,空 *** 作本身不执行任何 *** 作,主要是为了保持程序的连续性。

2.8 WAIT,等待BUSY引脚为高。

2.9 LOCK,封锁前缀可以锁定其后指令的 *** 作数的存储单元,该指令在指令执行期间一直有效。在多任务环境中,可以用它来保证独占其享内存,只有以下指令才可以用LOCK前缀:

XCHG,ADD,ADC,INC,SUB,SBB,DEC,NEG,OR,AND,XOR,NOT,BT,BTS,BTR,BTC

3.0 说明处理器类型的伪指令

.8086,只支持对8086指令的汇编

.186,只支持对80186指令的汇编

.286,支持对非特权的80286指令的汇编

.286C,支持对非特权的80286指令的汇编

.286P,支持对80286所有指令的汇编

.386,支持对80386非特权指令的汇编

.386C,支持对80386非特权指令的汇编

.386P,支持对80386所有指令的汇编

只有用伪指令说明了处理器类型,汇编程序才知道如何更好去编译,连接程序,更好地去检错。

九,FPU instructions(摘自fasm的帮助文档中,有时间我会反它翻译成中文的)

The FPU (Floating-Point Unit) instructions operate on the floating–point

values in three formats: single precision (32–bit), double precision (64–bit)

and double extended precision (80–bit). The FPU registers form the stack

and each of them holds the double extended precision floating–point value.

When some values are pushed onto the stack or are removed from the top,

the FPU registers are shifted, so st0 is always the value on the top of FPU

stack, st1 is the first value below the top, etc. The st0 name has also the

synonym st.

fld pushes the floating–point value onto the FPU register stack. The

operand can be 32–bit, 64–bit or 80–bit memory location or the FPU register,

it’s value is then loaded onto the top of FPU register stack (the st0 register)

and is automatically converted into the double extended precision format.

fld dword [bx] load single prevision value from memory

fld st2 push value of st2 onto register stack

fld1, fldz, fldl2t, fldl2e, fldpi, fldlg2 and fldln2 load the commonly

used contants onto the FPU register stack. The loaded constants are

+1.0, +0.0, log2 10, log2 e, pi, log10 2 and ln 2 respectively. These instructions

have no operands.

fild convert the singed integer source operand into double extended precision

floating-point format and pushes the result onto the FPU register stack.

The source operand can be a 16–bit, 32–bit or 64–bit memory location.

fild qword [bx] load 64-bit integer from memory

fst copies the value of st0 register to the destination operand, which can

be 32–bit or 64–bit memory location or another FPU register. fstp performs

the same operation as fst and then pops the register stack, getting rid of

st0. fstp accepts the same operands as the fst instruction and can also

store value in the 80–bit memory.

fst st3 copy value of st0 into st3 register

fstp tword [bx] store value in memory and pop stack

fist converts the value in st0 to a signed integer and stores the result

in the destination operand. The operand can be 16–bit or 32–bit memory

location. fistp performs the same operation and then pops the register

stack, it accepts the same operands as the fist instruction and can also store

integer value in the 64–bit memory, so it has the same rules for operands as

fild instruction.

fbld converts the packed BCD integer into double extended precision

floating–point format and pushes this value onto the FPU stack. fbstp

converts the value in st0 to an 18–digit packed BCD integer, stores the

result in the destination operand, and pops the register stack. The operand

should be an 80–bit memory location.

fadd adds the destination and source operand and stores the sum in the

destination location. The destination operand is always an FPU register,

if the source is a memory location, the destination is st0 register and only

source operand should be specified. If both operands are FPU registers, at

least one of them should be st0 register. An operand in memory can be a

32–bit or 64–bit value.

fadd qword [bx] add double precision value to st0

fadd st2,st0 add st0 to st2

faddp adds the destination and source operand, stores the sum in the destination

location and then pops the register stack. The destination operand

must be an FPU register and the source operand must be the st0. When no

operands are specified, st1 is used as a destination operand.

38 CHAPTER 2. INSTRUCTION SET

faddp add st0 to st1 and pop the stack

faddp st2,st0 add st0 to st2 and pop the stack

fiadd instruction converts an integer source operand into double extended

precision floating–point value and adds it to the destination operand.

The operand should be a 16–bit or 32–bit memory location.

fiadd word [bx] add word integer to st0

fsub, fsubr, fmul, fdiv, fdivr instruction are similar to fadd, have

the same rules for operands and differ only in the perfomed computation.

fsub substracts the source operand from the destination operand, fsubr

substract the destination operand from the source operand, fmul multiplies

the destination and source operands, fdiv divides the destination operand by

the source operand and fdivr divides the source operand by the destination

operand. fsubp, fsubrp, fmulp, fdivp, fdivrp perform the same operations

and pop the register stack, the rules for operand are the same as for the faddp

instruction. fisub, fisubr, fimul, fidiv, fidivr perform these operations

after converting the integer source operand into floating–point value, they

have the same rules for operands as fiadd instruction.

fsqrt computes the square root of the value in st0 register, fsin computes

the sine of that value, fcos computes the cosine of that value, fchs

complements its sign bit, fabs clears its sign to create the absolute value,

frndint rounds it to the nearest integral value, depending on the current

rounding mode. f2xm1 computes the exponential value of 2 to the power of

st0 and substracts the 1.0 from it, the value of st0 must lie in the range ?1.0

to +1.0. All these instruction store the result in st0 and have no operands.

fsincos computes both the sine and the cosine of the value in st0 register,

stores the sine in st0 and pushes the cosine on the top of FPU register

stack. fptan computes the tangent of the value in st0, stores the result in

st0 and pushes a 1.0 onto the FPU register stack. fpatan computes the

arctangent of the value in st1 divided by the value in st0, stores the result

in st1 and pops the FPU register stack. fyl2x computes the binary logarithm

of st0, multiplies it by st1, stores the result in st1 and pop the FPU

register stackfyl2xp1 performs the same operation but it adds 1.0 to st0

before computing the logarithm. fprem computes the remainder obtained

from dividing the

是 置入代码() 吧? 那个是指机器码,不是汇编指令,比如说汇编指令中的NOP对应的机器码是90(16进制),转换为10进制就是144, 这里的用法就是:置入代码({144}) ~

调用格式: 〈无返回值〉 置入代码 (通用型 代码数据) - 系统核心支持库->其他

英文名称:MachineCode

在编译后文件代码段中当前语句位置置入指定的机器指令码数据。本命令为高级命令。

参数<1>的名称为“代码数据”,类型为“通用型(all)”。欲置入到代码段中的机器指令码数据,可以是字节集数据或二进制文件名文本。

*** 作系统需求: Windows、Linux


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8678470.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存