具体回答如图:
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
导数的单调性:
若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
lnx分之一的导数是-1//[x(lnx)^2]。
由于1/lnx可以化为(lnx)^(-1),所以它的导数可以用商的求导公式(1/v)'=-v'/v^2。
求解,具体过程为:
(1/lnx)'
=-(lnx)'/(lnx)^2
=-(1/x)/(lnx)^2
=-1//[x(lnx)^2]
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。
这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。
lnx分之一的导数。
√(1/lnx)'=-1/2√(1/lnx)×-(1/lnx)²×1/x=1/[2xln²x√(1/lnx)]。
[√ln(1/x)]'=½/√ln(1/x)·1/(1/x)·-1/x²=-1/[x√ln(1/x)]。
∫lnxdx=x*lnx- ∫xdlnx=x*lnx- ∫x*(1/x)dx=x*lnx- ∫dx=x*lnx- x+c (c为任意常数)。
所以:x*lnx- x+c 的导数为ln。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。
实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。
微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的 *** 作,它们都是微积分学中最为基础的概念。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)