matlab有几种神经网络?

matlab有几种神经网络?,第1张

常见的有大概三十个吧,包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等

小波的不必自己写程序 用他的用户界面就好,很强大!! 当然你也可以自己写,不过很麻烦。至于找他的源代码 我没找到。好像是点击什么那个生成或者编辑源代码 就像那个用户界面设计 和sumilink之类的,我平常也没弄过他的源代码

1小波分析简介

20世纪80年代后期至今,一种著名的、在各行各业有重要应用价值的数学理论和方法技术在科学技术界得到了广泛的重视和采用,它就是被誉为“数学显微镜”的小波分析(李世雄,1994)。小波分析的主要功能和特点是,它具有多分辨分析或多尺度分析功能,可以把信号分解成各种不同的尺度成分;它具有很强的局部分析功能,同时具有时间(或空间)域和频率域的局部分析性质,它可自动地通过伸缩、平移聚焦到信号的任一细节对其加以分析(侯遵泽,1998)

(1)小波分析基本原理。小波(wavelet),即小区域的波,是一种特殊的长度有限、平均值为0的波形。它有两个特点:一是“小”,即在时域都具有紧支集或近似紧支集;二是正负交替的波动性。如果用小波和构成傅里叶分析基础的正弦波做比较的话,傅里叶分析所用的正弦波在时间上没有限制,从负无穷到正无穷,但小波则倾向于不规则与不对称。

傅里叶分析是把信号分解到一组相互正交的正弦波上的,也就是基函数,我们可以把基函数看成是度量信号某些特征的一把“尺子”,傅里叶分析度量的就是信号的频谱特征,但是如果这把“尺子”过于规则,有时候就不能十分精确地表达信号蕴含的信息,而在小波分析中,“尺子”换成了规则程度更低的小波函数,从而可以更加有效地表达信号中信息的成分。

小波变换对不同频率在时域上的取样步长是调节性的,即在低频时小波变换的时间分辨率较差,而频率分辨率较高;在高频时小波变换的时间分辨率较高,而频率分辨率较低(图2-13),这正符合低频信号变化缓慢而高频信号变化迅速的特点(胡昌华,1999)。这就构成了利用小波变换进行信号分析的基础。

图2-13 数字信号的小波变换

(2)一维连续小波变换。小波变换实际上是求取信号在各小波函数上的投影值。每个小波函数均由一个母小波函数经过尺度伸缩与时间平移得来的。信号分析的一般思路就是分解与组合,寻找一组最能代表信号特征的函数形式,将信号用这些量来逼近,或者写成这些量的线性组合的形式。

小波分析的思想来源于伸缩和平移方法:对波形的尺度伸缩就是在时间轴上对信号进行压缩与伸展,而时间平移就是指小波函数在时间轴上的波形平行移动。

(3)离散小波变换。由于连续小波变换的伸缩和平移系数是相互独立的,所以通过伸缩和平移得到的各个小波函数之间有一定的相似性,但由于这两个系数之间的独立,就引入了信息的冗余。在分辨率一定的情况下,描述了多余的信息,使得反映信号特征的一些参数相互重叠,给我们的分析带来不便,但这些特点可以用在本身就有自相似性的信号上,可以让我们更清楚地看到信号自身的自相似性。

此外,由于冗余信息的存在,也使得小波逆变换的重构过程不唯一,也就是说,由同一母小波生成的不同的小波变换函数可能重构成同一个信号。为了减少冗余信息,就引入了离散小波变换的概念,其中的伸缩和平移系数是可数的,重构过程用求和的形式给出。如果伸缩和平移系数满足一定的对应关系,则称为二进小波变换(尺度以2的幂的形式给出)。离散小波变换主要是建立在二进制小波变换的基础上的。

测井曲线数据也恰好是离散数据,符合离散变换的要求。在利用小波分析进行层序地层划分时,主要是对测井曲线进行多尺度分解,得到不同尺度下的小波变换图,利用其表现出来的特征来划分不同级次的层序。

2利用小波分析进行层序地层划分

利用小波分析方法是层序地层划分方法上的一种新的尝试,其目的是尽量减少层序划分过程中的主观因素,依靠地层自身表现出来的客观特征来识别层序、准层序组以及准层序。在我们研究的沉积岩地层中,沉积物的特征可以反映沉积时水体的特征。随着沉积水深的变化,沉积物中多种特征都会相应的发生变化,如放射性物质含量、有机质含量或其他微量元素的含量等,这种变化就会在相应的测井曲线上反映出来。而沉积水深变化受到了多种因素的影响,有长期和短期的旋回,是多个不同周期旋回的叠加,因此测井曲线应该是沉积地层中某种随水深变化的特征的多种频率变化的响应的叠加。也就是说,测井曲线中包含着沉积水深不同周期变化的信息,是多个沉积水深变化周期相互叠加的响应。而小波分析能够将信号分解为不同频率不同周期的旋回,因此,小波分析的特点恰好可以和测井曲线的特点相对应,利用小波分析的方法可以比较准确地将测井曲线中相互叠加的反映水深变化的不同周期的信息分别识别出来,识别出的这些信息就可以用来进行沉积旋回的划分。

同时,小波分析方法还可以帮助解决传统研究方法所不能解决的一些难题,如大段单一岩性地层中的沉积旋回识别。大段单一岩性尤其是大段泥岩、页岩,并不是一个小的沉积旋回里沉积的产物,相反,应是一个相当长时期沉积下来的,但是通过传统的岩性划分方法却很难将其划分开,这就给准层序甚至准层序组的划分造成了困难。小波分析方法可以较好地解决这一问题,利用这种方法可以从测井曲线的细微变化中识别沉积间断和沉积旋回。

(1)测井曲线的选择。不同的曲线具有不同的地质含义,进行相同的变换可能会得到不同的结果。但在研究中通过对GR、AC、COND、电阻率等多条曲线进行小波变换后对比发现,不同测井曲线所得出的变换结果尽管形态上不完全一样,但在旋回的划分上却比较一致(图2-14)。图中曲线a是COND测井曲线经过db5小波变换后的结果,曲线b是同一井段AC曲线变换后的结果。出现这个结果是由于虽然不同的曲线代表着不同的地层响应,会呈现出不同的特征,但地层中各种参数的变化主要受沉积环境的影响,会随着沉积环境的旋回变化呈现出基本一致的旋回特征。这也从一个方面反映了小波变换在沉积旋回划分中的客观性。因此,可以选择目标井的测量精度较高、质量较好的曲线来进行小波变换,进而进行沉积旋回的划分。

图2-14 对COND和AC曲线进行小波变换结果对比

(2)小波的选择。同傅里叶分析不同,小波分析的基(小波函数)不是唯一存在的,所有满足小波条件的函数都可以作为小波函数,那么小波函数的选取就成了十分重要的问题,实际选取小波的标准主要有以下三种。

1)自相似性原则:对二进小波变换(因为在正交小波变换中,取样的方式就是按照小波函数取样的,所以不存在这个问题),如果选择的小波对信号有一定相似性,则变换后的能量就比较集中,可以有效减少计算量。

2)判别函数:针对某类问题,找出一些关键性的技术指标,得到一个判别函数,将各种小波函数代入其中,得到一个最优原则。

3)支集长度:大部分应用选支集长度在5~9之间的小波。因为支集太长会产生边界问题,支集太短不利于信号能量的集中。

但在实际应用中,因为大部分信号的信息量太大,很难找到相应的模式,因此主要是依靠经验来选取。根据前人研究经验及作者对不同函数所做结果的对比,本书采用的是Daubechies小波,阶数为5。

Daubechies小波是由著名小波学者Ingrid Daubechies所创造,她发明的紧支集正交小波是小波领域的里程碑,使得小波的研究由理论转到可行。这一系列的小波简写成dbN,其中N表示阶数。

(3)工作流程。测井曲线能比较准确地反映井旁地层的电性、物性等特征,但往往会受到测井仪器、钻井泥浆等其他非地层因素的干扰,且不同频率的旋回相互叠加,对正确识别和划分沉积旋回造成一定的影响。小波分析能真正消除干扰信号,放大真实信息,按不同频率反映出测井曲线中包含的真正旋回特征,以此划分不同级别层序单元,同时还可以在划分高精度沉积旋回的基础上,与Fischer图解相结合划分出体系域。

MATLAB软件的小波分析工具箱是一种比较常用的工具。MATLAB是Math works公司于1982年推出的一套高性能的数值计算和可视化软件。MATLAB的推出得到了广大专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础。各个领域的专家学者相继推出了MATLAB工具箱,包括信号处理、神经网络、图像处理、小波分析等。其中小波分析工具箱可以满足对测井曲线进行小波变换的需要。

图2-15 小波分析流程图

在对测井曲线进行小波变换时,首先需要对所研究层段的顶底界面进行准确的标定,然后将需要变换的该深度段的测井曲线数值建立单独的文本文件作为原始文件。将原始文件导入后保存成m格式的信号文件。选择MATLAB软件的wavelet(小波分析)工具箱进行离散一维小波变换,小波类型选择db,阶数为5,最大级数定为12,将上述参数选好后进行分析,即可得到一组12条不同级次的db5小波变换曲线(图2-15)。此外对其进行连续一维小波变换,可以得到小波的频谱分析图,选择合适的最大显示值,根据频谱图上图形的闭合方向可以区分出层序的界面和层序单元(图2-6,图2-7)。

(4)单井分析实例。牛100井位于牛庄洼陷西部,地层以砂泥岩互层为主,岩性变化较快(图2-16)。利用小波分析方法对AC、R25两条测井曲线进行了一维连续小波变换,分别得到其小波变换谱系图,对AC曲线进行了一维离散变换,得到不同阶数的小波,根据与地震、测井及录井岩性资料的对比,选用d11,d9,d7三个层的小波变换曲线分别进行层序、准层序组和准层序的划分。

将传统划分方法所得的结果与小波分析方法所得结果进行对比可以比较明显的看出,在层序和准层序组的划分上两种方法划分的层序单元基本一致,可以相互验证。在准层序级别上的划分,小波分析方法的优势就比较明显地体现了出来,划分的旋回数较多,精度也有提高。这也正是小波分析作为“数学显微镜”的特点所决定的。

从图2-16中小波分析得到的d11曲线可以看出,这一段地层可以划分为两个大的旋回,对应两个层序,谱系图上的特征也比较明显。其中每个大的旋回又可以分为三个次一级的旋回,在d9及谱系图上可以找到相关界面,相当于每个层序划分出三个准层序组,每个准层序组在测井曲线及录井资料上也有较明显的反旋回特征。在进行准层组的划分时,小波分析方法可以划分出肉眼不易识别的旋回,从而提高了划分精度。整段地层一共可以划分为21个准层序,代表不同的沉积旋回。其旋回特征在d7曲线上有较好体现,从谱系图上也可以找到各界面的标志。从测井曲线和岩性上看,基本上每一个准层序都是一个反旋回,代表着一期的水体变换,这也完全符合层序地层学的基本原理。

图2-16 牛100井小波分析资料的层序地层划分

王62井位于牛庄洼陷东部,与牛100井相比,划分出的各层序单元的厚度发生了明显的变化,但数目基本一致,这也证明了小波分析划分层序地层的结果是比较可靠的。通过对AC曲线的小波变换得到AC曲线的小波变换谱系图和小波变换曲线,如图2-17所示。从谱系图和d11曲线上可以将整段地层划分为两个大的旋回,分别对应层序Ⅲ和层序Ⅳ。其中每个层序又可以划分为3个准层序组,在d9曲线上可以看到相应的旋回出现,谱系图上可以找到界面的标志(图2-17)。王62井这一段地层一共可以划分成20个准层序,缺失第一个准层序。各准层序在岩石类型、颜色和测井曲线上基本上可以看出反旋回特征,符合层序地层划分方法。

通过牛100井、王62井的划分可以看出,小波分析方法在砂泥岩互层的地层中有较好的应用效果,可以提高层序划分的精度和准确性。在层序划分中有比较好的可重复性,使得全区的划分结果比较客观和统一,减少了人为因素造成的干扰。

经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的方法。但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GI S)、辅助变量法(IV)、增广最小二乘法(EI,S)和广义最小二乘法(GI S),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR—I S)和随机逼近算法等。

经典的系统辨识方法还存在着一定的不足: (1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证;(2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值;(3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。 随着系统的复杂化和对模型精确度要求的提高,系统辨识方法在不断发展,特别是非线性系统辨识方法。主要有:

1、集员系统辨识法

在1979年集员辨识首先出现于Fogel 撰写的文献中,1982年Fogel和Huang又对其做了进一步的改进。集员辨识是假设在噪声或噪声功率未知但有界UBB(Unknown But Bounded)的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集(例如椭球体、多面体、平行六边体等)。不同的实际应用对象,集员成员集的定义也不同。集员辨识理论已广泛应用到多传感器信息融合处理、软测量技术、通讯、信号处理、鲁棒控制及故障检测等方面。

2、多层递阶系统辨识法

多层递阶方法的主要思想为:以时变参数模型的辨识方法作为基础,在输入输出等价的意义下,把一大类非

线性模型化为多层线性模型,为非线性系统的建模给出了一个十分有效的途径。

3、神经网络系统辨识法

由于人工神经网络具有良好的非线性映射能力、自学习适应能力和并行信息处理能力,为解决未知不确定非线性系统的辨识问题提供了一条新的思路。

与传统的基于算法的辨识方法相比较,人工神经网络用于系统辨识具有以下优点:(1)不要求建立实际系统的辨识格式,可以省去对系统建模这一步骤;(2)可以对本质非线性系统进行辨识;(3)辨识的收敛速度仅与神经网络的本身及所采用的学习算法有关;(4)通过调节神经元之间的连接权即可使网络的输出来逼近系统的输出;(5)神经网络也是系统的一个物理实现,可以用在在线控制。

4、模糊逻辑系统辨识法

模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的

和有效的方法,在非线性系统辨识领域中有十分广泛的应用。模糊逻辑辨识具有独特的优越性:能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。典型的模糊结构辨识方法有:模糊网格法、自适应模糊网格法、模糊聚类法及模糊搜索树法等。

5、小波网络系统辨识法

小波网络是在小波分解的基础上提出的一种前馈神经网络口 ,使用小波网络进行动态系统辨识,成为神经网络辨识的一种新的方法。小波分析在理论上保证了小波网络在非线性函数逼近中所具有的快速性、准确性和全局收敛性等优点。小波理论在系统辨识中,尤其在非线性系统辨识中的应用潜力越来越大,为不确定的复杂的非线性系统辨识提供了一种新的有效途径,其具有良好的应用前景。

你用的工具箱函数了吗?用工具箱函数可以简单点,工具箱调用是nntool;在command windows使用,先用import,将数据分别放入 inputs和targets(导入数据)。然后按NEW NETWORK选择结构,选择Feedforward Backprop,确定Number of Layers(网络层数),在下面确定每层节点数,然后选择下函数:logsig ,purelin,tansig。最后,关闭此窗口。单击View,即可显示结构。

然后按train,在 inputs和targets里面填入输入值X和训练的Y,在training parameters中设置你要的参数,比如误差。最后按train就可以开始训练。完了一定记住按网络模型输出(Export),将模型转入command windows。下面调用:如y1=sim(network1,x0);plot(x,y,'o',x0,y0,y1,':')。

如果你要程序,可以这样:

function BP

x=[-1:001:1];

y=[-1:001:1];

p=[x;y];

T=x^2+y^2;

x0=[-1:01:1];

y0=[-1:01:1];

p0=[x0;y0];

T0=x0^2+y0^2;

net=newff(minmax(p),[10,1],{'logsig','purelin'});

nettrainParamepochs=10000;

nettrainParamgoal=1e-6;

net=train(net,p,T);

figure;

T1=sim(net,p0);

plot(p,T,'o',p0,T0,p0,T1,':');

end

第1章 BP神经网络的数据分类——语音特征信号分类1

本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。

第2章 BP神经网络的非线性系统建模——非线性函数拟合11

本章拟合的非线性函数为y=x21+x22。

第3章 遗传算法优化BP神经网络——非线性函数拟合21

根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。

第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36

对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。

第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45

BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。

第6章 PID神经元网络解耦控制算法——多变量系统控制54

根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。

第7章 RBF网络的回归——非线性函数回归的实现65

本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。

第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73

根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。

第9章 离散Hopfield神经网络的联想记忆——数字识别81

根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。

第10章 离散Hopfield神经网络的分类——高校科研能力评价90

某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。

第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100

现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。

第12章 SVM的数据分类预测——意大利葡萄酒种类识别112

将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。

第13章 SVM的参数优化——如何更好的提升分类器的性能122

本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。

第14章 SVM的回归预测分析——上证指数开盘指数预测133

对上证指数从19901220-20090819每日的开盘数进行回归分析。

第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141

在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。

若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。

第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153

本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。

第17章SOM神经网络的数据分类——柴油机故障诊断159

本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。

第18章Elman神经网络的数据预测——电力负荷预测模型研究170

根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。

第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176

本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。

第20章 神经网络变量筛选——基于BP的神经网络变量筛选183

本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。

第21章 LVQ神经网络的分类——乳腺肿瘤诊断188

威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。

第22章 LVQ神经网络的预测——人脸朝向识别198

现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。

第23章 小波神经网络的时间序列预测——短时交通流量预测208

根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。

第24章 模糊神经网络的预测算法——嘉陵江水质评价218

根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。

第25章 广义神经网络的聚类算法——网络入侵聚类229

模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。

第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236

根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。

第27章 遗传算法优化计算——建模自变量降维243

在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。

第28章 基于灰色神经网络的预测算法研究——订单需求预测258

根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。

第29章 基于Kohonen网络的聚类算法——网络入侵聚类268

根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。

第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277

为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/12157521.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存