如何在Solaris下进行SAN存储配置

如何在Solaris下进行SAN存储配置,第1张

Oracle Solaris 10 和 Oracle Solaris 11 自带了一个光纤通道发起方系统,您可以对它进行配置以便将 Sun ZFS

存储设备提供的光纤通道 (FC) LUN 集成到 Oracle Solaris 环境中。本文介绍如何配置 Oracle Solaris 光纤通道系统以及如何配置

Sun ZFS 存储设备来配置供 Oracle Solaris 服务器访问的 FC LUN。可以使用浏览器用户界面 (BUI) 完成这些配置。

本文做出以下假设:

已知 Sun ZFS 存储设备的 root 帐户口令。

已知 Sun ZFS 存储设备的 IP 地址或主机名。

已配置好 Sun ZFS 存储设备使用的网络。

Sun ZFS 存储设备已配置有具有足够可用空闲空间的存储资源池。

已知 Oracle Solaris 服务器的 root 帐户口令。

Sun ZFS 存储设备已经连接到光纤通道交换机。

已在 FC 交换机上配置了相应的区域,允许 Oracle Solaris 主机访问 Sun ZFS 存储设备。

配置 Oracle Solaris FC 系统

为了让 Sun ZFS 存储设备和 Oracle Solaris 服务器彼此标识,每个设备的 FC 全球编号 (WWN)

必须在另一个设备中注册。您必须确定在 FC 交换机上实现的某些形式 FC 区域的 WWN。

主机的 FC WWN 用于向 Sun ZFS 存储设备标识主机,并且需要它来完成本文中的配置过程。

WWN 来自在 Oracle Solaris 主机和 Sun ZFS 存储设备中安装的 FC 主机总线适配器 (HBA)。

为了配置 Oracle Solaris FC 系统,您需要知道 Sun ZFS 存储设备的 WWN。在传统的双结构存储区域网络 (SAN) 中,Sun

ZFS 存储设备至少有一个 FC 端口连接到每个结构。因此,您必须至少确定两个 FC WWN。

标识 Sun ZFS 存储设备 FC WWN

首先,您需要建立一个到 Sun ZFS 存储设备的管理会话。

在 Web 浏览器的地址栏中输入一个包含 Sun ZFS 存储设备的 IP 地址或主机名的地址,如以下 URL 所示:

https://<ip-address or host name>:215

将显示登录对话框。

输入用户名和口令,然后单击 LOGIN。

成功登录到 BUI 之后,您可以通过 Configuration 选项卡标识 WWN。

单击 Configuration > SAN > Fibre Channel

Ports。

将显示安装在 Sun ZFS 存储设备中的 FC 端口。由于每个 HBA 通道只有一个已发现的端口,因此这必须是 HBA 通道本身。

在前面的示例中,端口 1 具有 WWN 21:00:00:e0:8b:92:a1:cf,端口 2 具有 WWN

21:01:00:e0:8b:b2:a1:cf。

在每个 FC 端口框右侧的列表框中,应该将 FC 通道端口设置为 Target。如果情况并非如此,则 FC

端口可能用于其他用途。在调查原因之前,请不要更改设置。(一种可能的原因是可能用于了 NDMP 备份。)

标识 Oracle Solaris 主机 HBA WWN

如果 Oracle Solaris 主机已经通过相应的电缆连接到 FC 交换机,则使用以下命令来标识 WWN。

要获得主机的 WWN,输入以下命令:

root@solaris:~# cfgadm -al -o show_FCP_dev

root@solaris:~#

在该输出中,您需要的控制器号为 c8 和 c9。当端口类型为

fc-fabric 时,您还可以看到两个端口都连接到一台 FC 交换机。接下来,查询这些控制器来确定发现的 WWN。

如果 HBA 端口未用于访问任何其他连接 FC 的设备,则可使用以下命令来确定 WWN。

root@solaris:~# prtconf -vp | grep port-wwn

port-wwn: 210000e08b89bf8e

port-wwn: 210100e08ba9bf8e

root@solaris:~#

如果正在访问 FC 设备,则以下命令将显示 FC HBA WWN。

root@solaris:~# luxadm -e dump_map /dev/cfg/c8

root@solaris:~#

显示为类型 0x1f 的最后一个条目 (Unknown type, Host Bus Adapter)

在端口 WWN 条目下提供了相应的 WWN。重复此命令,使用在第 1 步中标识的其他控制器替换

/dev/cfg/c8。

从输出中,您可以看到 c8 具有 WWN

21:00:00:00:e0:8b:89:bf:8e,c9 具有 WWN

21:01:00:e0:8b:a9:bf:8e。

然后,可以使用 Sun ZFS 存储设备 HBA 和 Oracle Solaris 主机 HBA WWN 来配置任何 FC 交换机区域。

完成此 *** 作之后,您可以运行以下命令来验证正确的区域:

root@solaris:~# cfgadm -al -o show_FCP_dev c8 c9

root@solaris:~#

现在,您可以看到可由 Oracle Solaris 主机访问的 Sun ZFS 存储设备提供的 WWN。

使用浏览器用户界面配置 Sun ZFS 存储设备

作为一个统一的存储平台,Sun ZFS 存储设备既支持通过 iSCSI 协议访问数据块协议

LUN,又支持通过光纤通道协议进行同样的访问。这一节讲述如何使用 Sun ZFS 存储设备 BUI 来配置 Sun ZFS 存储设备,使其能够识别 Oracle

Solaris 主机并向该主机提供 FC LUN。

定义 FC 目标组

在 Sun ZFS 存储设备上创建目标组,以便定义 Oracle Solaris 服务器可通过哪个端口和协议访问提供给它的 LUN。对于此示例,创建 FC

目标组。

执行以下步骤在 Sun ZFS 存储设备上定义 FC 目标组:

单击 Configuration > SAN 显示 Storage Area Network (SAN)

屏幕

单击右侧的 Targets 选项卡,然后选择左侧面板顶部的 Fibre Channel

Ports

将鼠标放置在 Fibre Channel Ports 框中,将在最左侧出现一个 Move 图标()

单击 Move 图标并将此框拖到 Fibre Channel Target

Groups 框,如图 4 所示。

拖动橙色框中的条目来创建新的目标组。将创建组,并将其自动命名为 targets-n,其中

n 是一个整数。

将光标移到新目标组条目上。在 Fibre Channel Target Groups 框右侧会出现两个图标

要重命名新的目标组 targets-0,单击 Edit 图标()显示对话框

在 Name 域中,将默认名称替换为新 FC 目标组的首选名称,单击

OK。本例中用名称 FC-PortGroup 替换

targets-0。在此窗口中,您还可以通过单击所选 WWN 左侧的框来添加第二个 FC 目标端口。第二个端口标识为 PCIe 1:Port 2。

单击 OK 保存更改。

单击 APPLY。 Fibre Channel Target Groups

面板中显示了如上的更改。

定义 FC 发起方

定义 FC 发起方以便允许从一台或多台服务器访问特定卷。应该配置对卷的访问权限,以便允许最少数量的 FC

发起方访问特定卷。如果多个主机可以同时写入一个指定卷并且使用非共享文件系统,则各主机上的文件系统缓存可能出现不一致,最终可能导致磁盘上的映像损坏。一般对于一个卷,只会赋予一个发起方对该卷的访问权限,除非使用的是一种特殊的集群文件系统。

FC 发起方用于从 Sun ZFS 存储设备的角度出发来定义“主机”。在传统的双结构 SAN 中,主机将至少由两个 FC 发起方来定义。FC

发起方定义包含主机 WWN。为了向 Sun ZFS 存储设备标识 Oracle Solaris 服务器,必须在存储设备中注册 Oracle Solaris FC

发起方 WWN,为此要执行以下步骤。

单击 Configuration > SAN 显示 Storage Area Network (SAN)

屏幕

单击右侧的 Initiators 选项卡,然后选择左侧面板顶部的 Fibre Channel

Initiators

单击 Fibre Channel Initiators 左侧的 图标显示 New Fibre Channel Initiator 对话框

如果已在 FC 交换机上配置了区域,则应显示 Oracle Solaris 主机的 WWN(假设没有为它们指定别名)。

在对话框底部单击一个 WWN(如果显示)预填充全球名称,或者在 World Wide Name 框中键入相应的

WWN。

在 Alias 框中输入一个更有意义的符号名称。

单击 OK。

对于其他涉及 Oracle Solaris 主机的 WWN,重复前面的步骤。

定义 FC 发起方组

将一些相关 FC 发起方组成逻辑组,这样可以对多个 FC 发起方执行同一个命令,例如,可以使用一个命令对一个组中的所有 FC 发起方分配 LUN

访问权限。对于下面的示例,FC 发起方组将包含两个发起方。注意,在集群中,多个服务器被视作一个逻辑实体,因此发起方组可以包含更多发起方。

执行以下步骤创建一个 FC 发起方组:

选择 Configuration > SAN 显示 Storage Area Network (SAN)

屏幕。

选择右侧的 Initiators 选项卡,然后单击左侧面板顶部的 Fibre Channel

Initiators。

将光标放置在上一节中创建的一个 FC 发起方条目上。此时,在该条目左侧会出现一个 Move 图标()

单击 Move 图标并将其拖到右侧的 Fibre Channel Initiator

Groups 面板中。此时,在 Fibre Channel Initiators Groups 面板底部出现了一个新的条目(**亮显)

将光标移到新的条目框上,然后释放鼠标键。此时会创建一个新的 FC 发起方组,其组名称为

initiators-n,其中 n 是一个整数,如图 13

所示。

将光标移到新发起方组条目上。在目标发起方组框右侧会出现几个图标

单击 Edit 图标()显示对话框

在 Name 域中,将新发起方组的默认名称替换为选定名称,单击 OK。本例使用

sol-server 作为该发起方组名称。

在此对话框中,您可以通过单击 WWN 左侧的复选框向组中添加其他 FC 发起方。

在 SAN 配置屏幕中单击 APPLY 确认所有修改,如图 15 所示。

定义 Sun ZFS 存储设备项目

为了对相关卷进行分组,您可以在 Sun ZFS 存储设备中定义一个项目。通过使用项目,可以继承项目所提供文件系统和 LUN

的属性。还可以应用限额和保留。

执行以下步骤创建一个项目:

选择 Shares > Projects 显示 Projects 屏幕

单击左侧面板顶部的 Projects 左侧的 图标显示

Create Project 对话框

要创建一个新项目,输入项目名称,单击 APPLY。在左侧面板的 Projects 列表中出现了一个新项目。

选择这个新项目查看其所含组件

定义 Sun ZFS 存储设备 LUN

接下来,您将从一个现有存储资源池中创建一个 LUN,供 Oracle Solaris 服务器访问。在下面的示例中,将创建一个名为

DocArchive1 的精简供应 64 GB LUN。

我们将使用定义 FC 目标组一节中创建的 FC 目标组

FC-PortGroup 来确保可以通过 FC 协议访问该 LUN。将使用定义 FC

发起方组一节中定义的发起方组 sol-server 来确保只有在 sol-server

组中定义的服务器才可以访问该 LUN。(在本例中,该发起方组只包含一个服务器。)

执行以下步骤创建一个 LUN:

选择 Shares > Projects 显示 Projects 屏幕。

在左侧 Projects 面板中,选择该项目。然后选择右侧面板顶部的 LUNs

单击 LUNs 左侧的 图标显示 Create LUN

对话框,如图 20 所示。

输入合适的值以配置该 LUN。对于本例,将 Name 设置为

DocArchive1,Volume size 设置为 64 G,并且选中

Thin provisioned 复选框。将 Target Group 设置为 FC 目标组

FC-PortGroup,将 Initiator Group 设置为

sol-server。将 Volume block size 设置为

32k,因为该卷将保存 Oracle Solaris ZFS 文件系统。

单击 APPLY 创建该 LUN 使其供 Oracle Solaris 服务器使用。

配置 LUN 以供 Oracle Solaris 服务器使用

现在我们已准备好了 LUN,可以通过 FC 发起方组使用它了。接着必须执行以下步骤,配置 LUN 以供 Oracle Solaris 服务器使用:

发起一个连接 Sun ZFS 存储设备的 Oracle Solaris FC 会话,如清单 1 所示。由于在发起该 FC 会话前已创建了 LUN,该

LUN 将会自动启用。

清单 1 发起 Oracle Solaris FC 会话

root@solaris:~# cfgadm -al c8 c9

root@solaris:~# cfgadm -c configure c8::210100e08bb2a1cf

root@solaris:~# cfgadm -c configure c9::210000e08b92a1cf

root@solaris:~# cfgadm -al -o show_FCP_dev c8 c9

root@solaris:~#

验证对 FC LUN 的访问,如清单 2 所示。

清单 2 验证对 FC LUN 的访问

root@solaris:~# devfsadm -c ssd

root@solaris:~# tail /var/adm/messages

[]

[]

在本例中,多路径状态最初显示为 degraded,因为此时只识别了一个路径。进一步,多路径状态更改为

optimal,因为存在多个到达卷的路径。

磁盘设备现在同样可供内部服务器磁盘使用。

格式化 LUN,如清单 3 所示。

清单 3 格式化 LUN 格式

root@solaris:~# format

Searching for disksdone

c1t600144F0F05E906C00004ED6096D0001d0: configured with capacity of 6393GB

AVAILABLE DISK SELECTIONS:

[]

Specify disk (enter its number): 4

selecting c1t600144F0F05E906C00004ED6096D0001d0

[disk formatted]

Disk not labeled Label it now y

FORMAT MENU:

disk - select a disk

type - select (define) a disk type

partition - select (define) a partition table

current - describe the current disk

format - format and analyze the disk

repair - repair a defective sector

label - write label to the disk

analyze - surface analysis

defect - defect list management

backup - search for backup labels

verify - read and display labels

save - save new disk/partition definitions

inquiry - show vendor, product and revision

volname - set 8-character volume name

!<cmd> - execute <cmd>, then return

quit

format> q

在准备好的 LUN 上构建 Oracle Solaris ZFS 文件系统,为此创建一个新的 ZFS 池、将此设备添加到 ZFS 池中,并创建 ZFS

文件系统,如清单 4 的示例所示。

清单 4 构建 Oracle Solaris ZFS 文件系统

root@solaris:~# zfs createzpool create docarchive1 \

c1t600144F0F05E906C00004ED6096D0001d0

root@solaris:~# zfs list

[]

root@solaris:~# zfs create docarchive1/index

root@solaris:~# zfs create docarchive1/data

root@solaris:~# zfs create docarchive1/logs

root@solaris:~# zfs list

[]

df(1) 命令的最后两行输出表明,现在大约有 64 GB 新空间可供使用。转载仅供参考,版权属于原作者。祝你愉快,哦

  FC、IP网络的安全性

  不论是光纤通道还是IP网络,主要的潜在威胁来自非授权访问,特别是管理接口。例如,一旦获得和存储区域网络(SAN)相连接服务器管理员的权限,欺诈进入就可以得逞。这样入侵者可以访问任何一个和SAN连接的系统。因此,无论使用的是哪一种存储网络,应该认识到应用充分的权限控制、授权访问、签名认证的策略对防止出现安全漏洞是至关重要的。

  测错攻击在IP网络中也比在光纤通道的SAN中易于实现。针对这类攻击,一般是采用更为复杂的加密算法。

  尽管DoS似乎很少发生,但是这并不意味着不可能。然而如果要在光纤通道SAN上实现DoS攻击,则不是一般的黑客软件所能实现的,因为它往往需要更为专业的安全知识。

  实现SAN数据安全方法

  保证SAN数据安全的两个基本安全机制是分区制zoning和逻辑单元值(Logical Unit Number)掩码。

  分区制是一种分区方法。通过该方法,一定的存储资源只对于那些通过授权的用户和部门是可见的。一个分区可以由多个服务器、存储设备、子系统、交换机、HBA和其它计算机组成。只有处于同一个分区的成员才可以互相通讯。

  分区制往往在交换级来实现。根据实现方式,可以分为两种模式,一为硬分区,一为软分区。硬分区是指根据交换端口来制定分区策略。所有试图通过未授权端口进行的通讯均是被禁止的。由于硬分区是在系统电路里来实现,并在系统路由表中执行,因此,较之软分区,具有更好的安全性。

  在光纤通道网络中,软分区是基于广域命名机制的(WWN)的。WWN是分配给网络中光纤设备的唯一识别码。由于软分区是通过软件来保证在不同的分区中不会出现相同的WWNs,因此,软分区技术比硬分区具有更好的灵活性,特别是在网络配置经常变化的应用中具有很好的可管理性。

  有些交换机具有端口绑定功能,从而可以限制网络设备只能和通过预定义的交换端口进行通讯。利用这种技术,可以实现对存储池的访问限制,从而保护SAN免受非授权用户的访问。

  另一种被广泛采用的技术是LUN掩码。一个LUN就是对目标设备(如磁带和磁盘阵列)内逻辑单元的SCSI识别标志。在光纤通道领域,LUN是基于系统的WWN实现的。

  LUN掩码技术是将LUN分配给主机服务器,这些服务器只能看到分配给它们的LUN。如果有许多服务器试图访问特定的设备,那么网络管理者可以设定特定的LUN或LUN组可以访问,从而可以拒绝其它服务器的访问,起到保护数据安全的目的。不仅在主机上,而且在HBA、存储控制器、磁盘阵列、交换机上也可以实现各种形式的LUN屏蔽技术。

  如果能够将分区制和LUN技术与其它的安全机制共同运用到网络及其设备上的话,对网络安全数据安全将是非常有效的。

  业界对存储安全的做法

  尽管目前对于在哪一级设备应用存储安全控制是最优的还没有一个明确的结论,例如,IPSec能够在ASIC、***设备、家电和软件上实现,但目前已有很多商家在他们的数据存储产品中实现了加密和安全认证功能。

  IPSec对于其它基于IP协议的安全问题,比如互联网小型计算机接口(iSCSI)、IP上的光纤通道 (FCIP)和互联网上的光线通道 (IFCP)等,也能起到一定的的作用。

  通常使用的安全认证、授权访问和加密机制包括轻量级的路径访问协议Lightweight Directory Access Protocol (LDAP)、远程认证拨入用户服务(RADIUS), 增强的终端访问控制器访问控制系统(TACACS+)、Kerberos、 Triple DES、高级加密标准(AES)、安全套接层 (SSL)和安全Shell(SSH)。

  尽管SAN和NAS的安全机制有诸多相似之处,其实它们之间也是有区别的。很多NAS系统不仅支持SSH、SSL、Kerberos、RADIUS和LDAP安全机制,同时也支持访问控制列表(ACL)以及多级许可。这里面有一个很重要的因素是文件锁定,有很多产品商家和系统通过不同的方式来实现这一技术。例如,微软采用的为硬锁定,而基于 Unix的系统采用的是相对较为松弛的建议级锁定。由此可以看到,如果在Windows-Unix混合环境下,将会带来一定的问题。

  呼唤存储安全标准化

  SAN安全的实现基础在交换机这一层。因此,存储交换机的标准对网络产品制造商的技术提供方式的影响是至关重要的。

  存储安全标准化进程目前还处于萌芽阶段。ANSI成立了T11光纤通信安全协议(FC-SP)工作组来设计存储网络基础设施安全标准的框架。目前已经提交了多个协议草案,包括FCSec协议,它实现了IPSec和光纤通讯的一体化;同时提交的还有针对光纤通讯的挑战握手认证协议(CHAP)的一个版本;交换联结认证协议(SLAP)使用了数字认证使得多个交换机能够互相认证;光纤通信认证协议(FCAP)是SLAP的一个扩展协议。IEEE的存储安全工作组正在准备制定一个有关将加密算法和方法标准化的议案。

  存储网络工业协会(SNIA)于2002年建立了存储安全工业论坛(SSIF),但是由于不同的产品商支持不同的协议,因此实现协议间的互 *** 作性还有很长一段路要走。

  关注存储交换安全

  大家都已经注意到了为了保证存储安全,应该在存储交换机和企业网络中的其它交换机上应用相同的安全预警机制,因此,对于存储交换机也应有一些特殊的要求。

  存储交换安全最重要的一个方面是保护光纤管理接口,如果管理控制台没有很好的安全措施,则一个非授权用户有可能有意或无意地入侵系统或改变系统配置。有一种分布锁管理器可以防止这类事情发生。用户需要输入ID和加密密码才能够访问交换机光纤的管理界面。为了将SAN设备的管理端口通过安全认证机制保护起来,最好是将SAN配置管理工作集中化,并且对管理控制台和交换机之间的通讯进行加密。另外一个方面,在将交换机接入到光纤网络之前,也应该通过ACL和 PKI机制实现授权访问和安全认证。因此,交换机间链接应当建立在严密的安全防范措施下。

图书馆配有核心交换机和边缘交换机46余台,PC服务器10台,全光纤通道SAN存储系统,存储容量达10TB,可覆盖整个校园网每个信息点。架设了馆藏书刊目录网上查询系统(OPAC系统)、SAN网络存储系统。馆内开通业务系统ILASII,配置有计算机工作站40台,阅览室读者检索用机10台,OPAC大厅公共检索机10台,电子文献查阅机300台。馆内各项业务工作实现网络管理,从采访、编目、流通到参考咨询、文献传递、资源的共建共享和馆内公务信息传送等,全部采用计算机管理。图书采访嵌入ILAS系统软件,实现网上文献荐;在图书编目上,加入了中国高等教育文献保障系(CALIS),利用络检索功能实现了与CALIS中心及全国高校图书馆联机编目;在图书流通阅览上,实现了借阅、预约和续借等自动化管理。

在学校党委的领导下全馆干部职工正在加速图书馆现代化建设,提高服务质量,扩大服务范围,为把孝感学院建成教学、科研和技术开发的文献信息服务中心而努力。

1、意思不同

NAS按字面简单说就是连接在网络上,具备资料存储功能的装置,因此也称为“网络存储器”。它是一种专用数据存储服务器。

IPSAN是在SAN后产生的,SAN默认指FCSAN,以光纤通道构建存储网络,IPSAN则以IP网络构建存储网络,较FCSAN,具有更经济、自由扩展等特点。

存储区域网络简称SAN,采用网状通道技术,通过FC交换机连接存储阵列和服务器主机,建立专用于数据存储的区域网络。

开放系统的直连式存储简称DAS,已经有近四十年的使用历史,随着用户数据的不断增长,尤其是数百GB以上时,其在备份、恢复、扩展、灾备等方面的问题变得日益困扰系统管理员。

2、优点不同

DAS能实现大容量存储,将多个磁盘合并成一个逻辑磁盘,满足海量存储的需求。可实现应用数据和 *** 作系统的分离,能提高存取性能,无须专业人员 *** 作和维护,节省用户投资。

SAN提供了一种与现有LAN连接的简易方法,并且通过同一物理通道支持广泛使用的SCSI和IP协议。SAN不受现今主流的、基于SCSI存储结构的布局限制。

NAS产品是真正即插即用的产品。NAS设备一般支持多计算机平台,用户通过网络支持协议可进入相同的文档,因而NAS设备无需改造即可用于混合Unix/Windows NT局域网内。

IPSAN价格合理的存储合并功能与更为简化的集中数据管理功能实施过程简单。IP网络技术相当成熟,IP-SAN减少了配置、维护、管理的复杂度。

3、特点不同

DAS可视化eCRF编辑功能,更易于数据收集,数据疑点同步自动核查,减少错误,提高数据质量,不同用户及角色选择性地拥有数据接触权,保证数据安全,保留所有用户数据 *** 作痕迹以备查。

SAN由于其基础是一个专用网络,因此扩展性很强,不管是在一个SAN系统中增加一定的存储空间还是增加几台使用存储空间的服务器都非常方便。通过SAN接口的磁带机,SAN系统可以方便高效的实现数据的集中备份。

IP SAN基于十分成熟的以太网技术,由于设置配置的技术简单、低成本的特色相当明显,而且普通服务器或PC机只需要具备网卡,即可共享和使用大容量的存储空间。 

四者的联系:IP-SAN的发展 其实是由 NAS 和SAN 发展过来的。通过NAS 和SAN的发展史,不难看出在早期由于DAS的发展,FAS 发展趋势,慢慢的形成的两个团队。

参考资料:

-DAS

-SAN

-NAS

-IPSAN

1、磁盘阵列将空间提供给这台主机,对于这台主机,这个磁盘阵列就是SAN存储;

2、这台主机创建了文件系统分区,并将分区共享出来给网络上其他主机访问,对于其他主机来说,磁盘阵列+这台主机的组合,相当于一个NAS存储解决方案了。

SAN设备提供的空间是裸设备,块级访问,通过iSCSI或FC为多主机提供空间;

NAS设备则有文件系统,提供的是文件访问,通过以太网以及NFS/CIFS等文件访问协议为多主机提供文件共享。

SAN存储域网络(Storage Area Network)是储存资料所流通的网域;以往 MIS人员常常为了SCSI 的讯号不稳定及长度限制所困扰,无法满足储存资料量的成长速度,SAN 正好可以解决这些问题,SAN 架构在光纤信道之上,所使用的是 Fibre Channel 标准协议,一个 Loop速度即可达 100MB/sec,长度可延伸至30公里,一个 Loop可连接的装置多达127 个,在不用关机的状况下即可进行硬盘数组的储存容量扩充。

  透过 SAN来作 LAN-Free Backup 可以将备份的效率达到最高值,解决网络频宽的瓶颈问题,把 LAN的频宽留给 Database Server或 Mail Server 来使用;SAN Solution 规划包含软件及硬件,因为 SAN 产品目前在市场上并不是很兼容及普及,所以在选购软硬件时需要注意互相支持的问题;HP 在SAN Solution 提供了 Fibre Channel Hub、Fibre Channel Host Bus Adapter、Fibre/SCSI Switch 等连接设备,HP 虽然提供完整SAN Ready的产品,也必须有SAN 软件解决方案搭配,才能提供给客户完整的规划,HP在备份解决方案中提供最新的 DLT 8000磁带柜,最大容量可达48 TB,可升级至6 个DLT 8000磁带机,已经是 SAN Ready 的产品,直接可连接 Fibre Channel Cable 至 Hub 或 Switch 上,目前支持 Fibre Channel Interface HP DLT Library 的备份软件有CA ARCserveIT、HPOmnibackII、Veritas Backup Exec、Veritas NetBackup等备份软件,但是每一厂商的 SAN Backup 架构不尽相同,最好先了解客户的实际环境需求,再为客户选择最佳的 SAN Backup Solution,或是分阶段规划亦可,因为 HP DLT Library 还有一项最贴心的升级方案,就是即使现在客户购买的不是 Fibre Channel Interface 的磁带柜,将来也可以升级为 Fibre Channel的Interface,一直伴随客户成长而提供适当的解决方案。

   Q1什么是SAN 跟 LAN 有何不同

  A1SAN 是Storage Area Network 的缩写,SAN 的基础根源于LAN 的技术,我们今日谈论的大多使用LAN 的专业术语,如switch、hub和 bridge 都是现今LAN 上使用的网络连接装置,LAN 与 SAN 较大的差别是:LAN 对Server 是 "Front-end" 的网络,而SAN 对Server 来说是 \'Back-end"的网络。SAN 架构的完成必须是根基在由ANSI(美国国家标准局)以及一些共同发展Fibre channel的团体对目前及未来的Fibre channel所制定的一些特别的规划设计,以确保相互间的兼容互动以及资料的整合。

  Q2Fibre Channel 跟 SAN 有什么关系 Fibre Channel 跟 SCSI 有何不同

  

A2 SAN 是架构在 Fibre Channel Standard 的储域网络,Fibre Channel 改善了许多SCSI 的限制,从下面表格可以看到 Fibre Channel 和 SCSI的差异:

  Q3SAN 有什么优点

  A3 a分享资源存取与设备 - Disk and Tape。

  b高速度、距离长,可提高资料的可使用率。

  c可作 Remote Mirror增加灾难防御力及重建速度。

  d透过 SAN 备份,降低经过LAN备份的Traffic负载。

  e集中管理与整合储存设备资源。

  fFC-Loop 可连接127 个Device,不需要Shutdown Server ,即可扩充储存容量,SAN

  解决方案具备良好扩充性。

   Q4为什么要规划 SAN 什么样的环境需要 SAN

  A4如果储存资料的成长率持续增高,近两年内可能成长至1 TB以上,建议规划 SAN

  Ready 的储存设备,包括 RAID 及 Tape Library,因为资料量扩增,必定增加硬盘

  数量,但 SCSI 的RAID 有 ID 及 Cable 长度的种种限制,在扩充性来说,无法达到

  需求及稳定度的要求,而且当资料量愈来愈大,可能分享给更多 Client,绝不容许

  机器有Shutdown的时间,而 SAN Ready 的 RAID 可以让机器在不 Shutdown 的状况

  下扩充硬盘容量,维持系统不停的正常运作。

   Q5我要如何选购 SAN 的产品?

  A5当公司规划 SAN的架构时,除了SAN Ready 的 Fibre Channel RAID 及备份的

  Tape Library,还有下面这些设备是必需选购的:

  aHost Bus Adapter - 依连接的作业平台选择 Fibre Channel Card 的种类,装置在主

  机中,连接 Storage、Fibre Channel Hub 或 Switch。

  bFibre Channel Hub - 可将储存设备分享给多台服务器。

  cFibre Channel Switch - 如果要将储存设备分享给不同平台的 *** 作系统,或要作

  SAN 的Security 进阶控管及连接多个 Fibre Channel Hub,须购买此设备及控管

  软件。

  dFibre Channel Cable 及 GBIC - 依主机及储存设备的连接长度选购Cable,Cable 有分 Optical 及 Copper 两种线材,决定使用哪一种 Cable 后再选择 GBIC 的种类,

  以符合 Cable Connector 的连接型态。

  eFibre Channel /SCSI Conventer - 若有些储存设备是 SCSI界面,要连接上 SAN的

  设备,则需购买FC/SCSI的讯号转接器。

  

   Q6SAN 对备份系统有何影响

  A6现在一般普遍的备份架构皆是透过网络来作集中备份,但是网络的速度一直是备份

  速度的主要瓶颈,针对一些资料量大的服务器,适合将数据传输从 LAN转移至

  SAN ,让 LAN 的频宽留给 AP 来使用,避免影响服务器正常运作,增加备份及资料

  回存的速度。

   Q7SAN 有哪些连接方式

  A7SAN是一个总括的组合名词,目前已被用来定义几乎是任何连接主机与储存设备的

  架构,例如host-hub-storage,或host-SCSI switch-storage以及host-fibre switch-

  storage 等不同连接方式,SAN 连接拓扑分为 Point-to-Point Topology、Loop

  Topology、Switch Topology。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/12172418.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存