TCP连接相关

TCP连接相关,第1张

为什么要有三次握手,因为如果只有两次握手,那么

第一次:客户端发送一个syn包给服务器,里面有一个随机生成的syn,然后客户端处于syn_send状态

第二次:服务端收到客户端发来的syn包之后,确认syn包,也就是生成一个ack=syn+1,然后再自己随机生成一个syn包,即syn+ack包,然后返回给客户端,自己变成syn_recv状态

第三次:客户端收到服务端发来的syn+ack包之后,确认ack是正确的之后,返回一个ack=syn+1给服务端,此包发送完毕,客户端进入了ESTABLISHED状态,服务端收到ack包后也进入ESTABLISHED状态。

SYN攻击,当第二次握手服务端发送了syn+ack包之后,收到客户端发送的ack之前这段时间的tcp链接成为半连接,此时服务端处于syn_recv状态。当大量客户端随机IP疯狂发送tcp链接请求时,客户端以为是不同用户的请求,所以队列中全是半连接,然后导致服务器宕机,正常请求被丢弃。

第一个包发送过程丢失

A会周期性超时重传,直到收到B的确认

第二个包发送过程丢失

B会周期性超时重传,直到收到A的确认

第三个包发送过程丢失

A发送完数据后单方面进入TCP的ESTABLISHED状态,B还处于半链接:

TCP协议为什么需要三次握手?

第一次:客户端发送一个fin给服务端表示自己要断开连接了,然后进入fin_wait_1状态

第二次:服务端收到fin后,发送一个ack=fin+1给客户端,服务端进入close_wait状态,客户端进入fin_wait_2状态

第三次:服务端发送一个fin,用来关闭服务端到客户端的数据传输,服务端进入last_ack状态

第四次:客户端收到fin后,进入time_wait状态,然后发送一个ack=fin+1给服务端,服务端确认后进入close状态,完成四次挥手

TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当主机1发出FIN报文段时,只是表示主机1已经没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕了;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回ACK报文段时,表示它已经知道主机1没有数据发送了,但是主机2还是可以发送数据到主机1的;当主机2也发送了FIN报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。如果要正确的理解四次分手的原理,就需要了解四次分手过程中的状态变化。

答案解析:

浏览器对并发请求的数目限制是针对域名的,即针对同一域名(包括二级域名)在同一时间支持的并发请求数量的限制。如果请求数目超出限制,则会阻塞。因此,网站中对一些静态资源,使用不同的一级域名,可以提升浏览器并行请求的数目,加速界面资源的获取速度。

在 HTTP/10 中,一个http请求收到服务器响应后,会断开对应的TCP连接。这样每次请求,都需要重新建立TCP连接,这样一直重复建立和断开的过程,比较耗时。所以为了充分利用TCP连接,可以设置头字段 Connection: keep-alive ,这样http请求完成后,就不会断开当前的TCP连接,后续的http请求可以使用当前TCP连接进行通信。

第一次访问有初始化连接和SSL开销

初始化连接和SSL开销消失了,说明使用的是同一个TCP连接。

HTTP/11 将 Connection 写入了标准,默认值为 keep-alive 。除非强制设置为 Connection: close ,才会在请求后断开TCP连接。

所以这一题的答案就是:默认情况下建立的TCP连接不会断开,只有在请求头中设置 Connection: close 才会在请求后关闭TCP连接。

HTTP/11 中,单个TCP连接,在同一时间只能处理一个http请求,虽然存在Pipelining技术支持多个请求同时发送,但由于实践中存在很多问题无法解决,所以浏览器默认是关闭,所以可以认为是不支持同时多个请求。

HTTP2 提供了多路传输功能,多个http请求,可以同时在同一个TCP连接中进行传输。

页面资源请求时,浏览器会同时和服务器建立多个TCP连接,在同一个TCP连接上顺序处理多个HTTP请求。所以浏览器的并发性就体现在可以建立多个TCP连接,来支持多个http同时请求。

Chrome浏览器最多允许对同一个域名Host建立6个TCP连接,不同的浏览器有所区别。

补充

如果都是HTTPS的连接,并且在同一域名下,浏览器会先和服务器协商使用 HTTP2 的 Multiplexing 功能进行多路传输,不过未必所有的挂在这个域名下的资源都会使用同一个TCP连接。如果用不了HTTPS或者HTTP2(HTTP2是在HTTPS上实现的),那么浏览器会就在同一个host建立多个TCP连接,每一个TCP连接进行顺序请求资源。

参考:

[1] 第8题-浏览器HTTP请求并发数和TCP连接的关系

发送方的发送窗口的上限值取接收方窗口和拥塞窗口这两个值中较小的一个,于是此时发送方的发送窗口为MIN{4000,2000}=2000B,由于发送方还没有收到第二个最大段的确认,所以此时主机甲还可以向主机乙发送的最大字节数为2000-1000=1000B。(参考于王道论坛)

在cmd运行窗口中输入DOS命令netstat,即可查看电脑的tcp连接。具体 *** 作请参照以下步骤。

1、进入电脑系统后,在键盘上同时按下“win+R”键,调出运行窗口。

2、然后在出现的窗口中,输入“cmd”字样,点击确定按钮。

3、然后便会进入到cmd的运行界面中,如图所示。

4、然后再输入DOS命令netstat,再按键盘上的回车键。

5、完成以上设置后,即可查看电脑的tcp连接情况。

从TCP协议角度来看,一个已建立的TCP连接有两种关闭方式,一种是正常关闭,即四次挥手关闭连接;还有一种则是异常关闭,我们通常称之为连接重置(RESET)。

首先说一下正常关闭时四次挥手的状态变迁,关闭连接的主动方状态变迁是FIN_WAIT_1->FIN_WAIT_2->TIME_WAIT,而关闭连接的被动方的状态变迁是CLOSE_WAIT->LAST_ACK->TIME_WAIT。在四次挥手过程中ACK包都是协议栈自动完成的,而FIN包则必须由应用层通过closesocket或shutdown主动发送,通常连接正常关闭后,recv会得到返回值0,send会得到错误码10058。

除此之外,在我们的日常应用中,连接异常关闭的情况也很多。比如应用程序被强行关闭、本地网络突然中断(禁用网卡、网线拔出)、程序处理不当等都会导致连接重置,连接重置时将会产生RST包,同时网络络缓冲区中未接收(发送)的数据都将丢失。连接重置后,本方send或recv会得到错误码10053(closesocket时是10038),对方recv会得到错误码10054,send则得到错误码10053(closesocket时是10054)。

*** 作系统为我们提供了两个函数来关闭一个TCP连接,分别是closesocket和shutdown。通常情况下,closesocket会向对方发送一个FIN包,但是也有例外。比如有一个工作线程正在调用recv接收数据,此时外部调用closesocket,会导致连接重置,同时向对方发送一个RST包,这个RST包是由本方主动产生的。

shutdown可以用来关闭指定方向的连接,该函数接收两个参数,一个是套接字,另一个是关闭的方向,可用值为SD_SEND,SD_RECEIVE和SD_BOTH。方向取值为SD_SEND时,无论socket处于什么状态(recv阻塞,或空闲状态),都会向对方发送一个FIN包,注意这点与closesocket的区别。此时本方进入FIN_WAIT_2状态,对方进入CLOSE_WAIT状态,本方依然可以调用recv接收数据;方向取值为SD_RECEIVE时,双发连接状态没有改变,依然处于ESTABLISHED状态,本方依然可以send数据,但是,如果对方再调用send方法,连接会被立即重置,同时向对方发送一个RST包,这个RST包是被动产生的,这点注意与closesocket的区别。

我们经常听到"建立TCP连接","服务器的连接数量有限"等,但仔细一想,连接究竟是个什么东西,是和电话一样两端连起一根线?似乎有点抽象不是么?

1久违的分组交换网络

似乎这个概念只有在学校里学计算机网络才能接触到,但不过今天的话题其实和它离不开关系。我们知道最早的电话网络是以很容易理解的形式存在的,就是单纯的一根线加两端的设备,设备之间所沟通的所有信息都通过一根特定的电缆来回传输,如下图:

这样的连接是我们特别好理解的,搭起两边的线,就是一个连接嘛!但是,我们讨论的是计算机网络!(严肃脸),计算机网络中两个设备节点是如何通信?

计算机网络采取分组交换技术,什么意思呢?就是我有一块数据要发给对方小苍,那我会把这一块数据分成N份单位数据,分别发出去,而每份单位数据走哪条路是不一定的,但是这些单位数据总要全部达到小苍手里,小苍再根据单位数据里记录的序号拼接起来,组成完整的一块数据。这就是分组的意思所在。

2协议和协议实现

上面不小心把TCP的大体实现给说了,实际上在具体的应用中,光有大体思路是不行的,还有很多细节问题,需要两个设备之间提前约定好协议,才能协同完成通信。举个例子:A向B发了10份单位数据,而B其实只收到9份单位数据,怎么办?

TCP协议大家都应该是知道的,但协议只是想法,真正起作用的是在路由节点和设备节点上的协议软件,是运行在设备上的具体执行者,它根据协议指导,对具体数据进行控制和 *** 作。这儿就不往下展开了。

认识到协议和协议软件这一点非常重要,因为连接的限制恰恰就是受软件在设备中资源分配的影响的。

3连接的真面目

上面说的第一种电话网络,如果两个设备搭设了一条线,那么两个电话就一定确定对方在线,因为他俩独享一条实时存在的线。但计算机网络的连接呢?

向上面的图一样(图里不深究TCP,仅仅用来说明连接大体过程),其实他们俩并不能确保对方就是在线,只是通过几番确认,认为对方一直会在。而如果确认了对方存在,那么就会为以后的对话通讯分配内存、CPU处理时间等资源,每个设备都会在本地去维持这么一个状态,来告诉自己是有一个连接的,这些设备所花的资源和维护的状态,就是连接。而整个网络是不会记录有着一条连接的,所以说连接只是记录在各个设备的一个状态信息。

那么,到现在我们知道了,连接其实并不是所谓的有一根电线连起两个设备,而是两方确认了一下对方的存在后,自己在本地记录的状态。那么下面可以讨论一下以前迷惑重重的概念了。

4为什么服务器都有连接数量的限制?

这里只做讨论。我认为是有两点:

物理带宽的限制,决定了一个时间段内发起连接的数据包不会超过某个数,造成了设备的链接数量的限制。

维持连接需要分配内存等资源,设备的资源有限,决定了一定有个最大连接数的极限。

5待续

通过连接往外延伸的话题不少,先到此为止吧,有时间再补。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/12176977.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存