不知你是不是用matlab的神经网络工具箱,因为一般神经网络都是成批处理的,每一次调整都会综合所有样本的误差进行调整,而不是一类一类的去调整,所以不会出现你说的现象。目前我看过的很多C++或者其它语言自己写的神经网络,都会有这样或那样的理解错误,建议先使用现成的matlab的神经网络工具箱进行训练。
另外是输入的问题,图象一般会先提取特征,再将特征作为输入。你在贴吧也提问了吧,这个我在贴吧里也回答了。
输出的问题,一般模式识别会用 0 1向量来代表,例如你有三类,目标输出应该是[ 0 1 0]这样,来代表它是第2类, 训练的时候用 0 1 0,当然,预测到的可能是[ 01 09 01]这样。
这是我所想到的问题,楼主看看是不是这样一回事。
下面是我的一些建议:
改为用神经网络工具箱。
借鉴《 MATLAB神经网络原理与实例精解 》里的 基于概率神经网络的手写体数字识别 ,对图象作预处理。
参考2012Bmatlab \R2012b\toolbox\nnet\nndemos下的classify_crab_demo例子。调用patternnet建立模式识别网络。
可以到 《神经网络之家》 学习神经网络。
车牌识别技术(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号,目前的技术水平为字母和数字的识别率可达到96%,汉字的识别率可达到95%。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。
参考下车牌智能识别的matlab代码,和你的手写数字识别差不多。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)