分类: 电子数码
解析:
1 虚拟存储技术的产生
虚拟化技术并不是一件很新的技术,它的发展,应该说是随着计算机技术的发展而发展起来的,最早是始于70年代由于当时的存储容量,特别是内存容量成本非常高,容量也很小,对于大型应用程序或多程序应用就受到了很大的限制为了克服这样的限制,人们就采用了虚拟存储的技术,最典型的应用就是虚拟内存技术随着计算机技术以及相关信息处理技术的不断发展,人们对存储的需求越来越大这样的需求 了各种新技术的出现,比如磁盘性能越来越好,容量越来越大但是在大量的大中型信息处理系统中,单个磁盘是不能满足需要,这样的情况下存储虚拟化技术就发展起来了在这个发展过程中也由几个阶段和几种应用首先是磁盘条带集(RAID,可带容错)技术,将多个物理磁盘通过一定的逻辑关系 起来,成为一个大容量的虚拟磁盘而随着数据量不断增加和对数据可用性要求的不断提高,又一种新的存储技术应运而生,那就是存储区域网络(SAN)技术SAN的广域化则旨在将存储设备实现成为一种公用设施,任何人员,任何主机都可以随时随地获取各自想要的数据目前讨论比较多的包括iSCSI,FC Over IP 等技术,由于一些相关的标准还没有最终确定,但是存储设备公用化,存储网络广域化是一个不可逆转的潮流
2 虚拟存储的概念
所谓虚拟存储,就是把多个存储介质模块(如硬盘,RAID)通过一定的手段集中管理起来,所有的存储模块在一个存储池(Storage Pool)中得到统一管理,从主机和工作站的角度,看到就不是多个硬盘,而是一个分区或者卷,就好象是一个超大容量(如1T以上)的硬盘这种可以将多种,多个存储设备统一管理起来,为使用者提供大容量,高数据传输性能的存储系统,就称之为虚拟存储
虚拟存储的分类
目前虚拟存储的发展尚无统一标准,从虚拟化存储的拓扑结构来讲主要有两种方式:即对称式与非对称式对称式虚拟存储技术是指虚拟存储控制设备与存储软件系统,交换设备集成为一个整体,内嵌在网络数据传输路径中;非对称式虚拟存储技术是指虚拟存储控制设备独立于数据传输路径之外从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统具体如下:
A对称式虚拟存储
图1
图1对称式虚拟存储解决方案的示意图
在图1所示的对称式虚拟存储结构图中,存储控制设备 High Speed Traffic Directors(HSTD)与存储池子系统Storage Pool集成在一起,组成SAN Appliance可以看到在该方案中存储控制设备HSTD在主机与存储池数据交换的过程中起到核心作用该方案的虚拟存储过程是这样的:由HSTD内嵌的存储管理系统将存储池中的物理硬盘虚拟为逻辑存储单元(LUN),并进行端口映射(指定某一个LUN能被哪些端口所见),主机端将各可见的存储单元映射为 *** 作系统可识别的盘符当主机向SAN Appliance写入数据时,用户只需要将数据写入位置指定为自己映射的盘符(LUN),数据经过HSTD的高速并行端口,先写入高速缓存,HSTD中的存储管理系统自动完成目标位置由LUN到物理硬盘的转换,在此过程中用户见到的只是虚拟逻辑单元,而不关心每个LUN的具体物理组织结构该方案具有以下主要特点:
(1)采用大容量高速缓存,显著提高数据传输速度
缓存是存储系统中广泛采用的位于主机与存储设备之间的I/O路径上的中间介质当主机从存储设备中读取数据时,会把与当前数据存储位置相连的数据读到缓存中,并把多次调用的数据保留在缓存中;当主机读数据时,在很大几率上能够从缓存中找到所需要的数据直接从缓存上读出而从缓存读取数据时的速度只受到电信号传播速度的影响(等于光速),因此大大高于从硬盘读数据时盘片机械转动的速度当主机向存储设备写入数据时,先把数据写入缓存中,待主机端写入动作停止,再从缓存中将数据写入硬盘,同样高于直接写入硬盘的速度
(2)多端口并行技术,消除了I/O瓶颈
传统的FC存储设备中控制端口与逻辑盘之间是固定关系,访问一块硬盘只能通过控制它的控制器端口在对称式虚拟存储设备中,SAN Appliance的存储端口与LUN的关系是虚拟的,也就是说多台主机可以通过多个存储端口(最多8个)并发访问同一个LUN;在光纤通道100MB/带宽的大前提下,并行工作的端口数量越多,数据带宽就越高
(3)逻辑存储单元提供了高速的磁盘访问速度
在视频应用环境中,应用程序读写数据时以固定大小的数据块为单位(从512byte到1MB之间)而存储系统为了保证应用程序的带宽需求,往往设计为传输512byte以上的数据块大小时才能达到其最佳I/O性能在传统SAN结构中,当容量需求增大时,唯一的解决办法是多块磁盘(物理或逻辑的)绑定为带区集,实现大容量LUN在对称式虚拟存储系统中,为主机提供真正的超大容量,高性能LUN,而不是用带区集方式实现的性能较差的逻辑卷与带区集相比,Power LUN具有很多优势,如大块的I/O block会真正被存储系统所接受,有效提高数据传输速度;并且由于没有带区集的处理过程,主机CPU可以解除很大负担,提高了主机的性能
(4)成对的HSTD系统的容错性能
在对称式虚拟存储系统中,HSTD是数据I/O的必经之地,存储池是数据存放地由于存储池中的数据具有容错机制保障安全,因此用户自然会想到HSTD是否有容错保护象许多大型存储系统一样,在成熟的对称式虚拟存储系统中,HSTD是成对配制的,每对HSTD之间是通过SAN Appliance内嵌的网络管理服务实现缓存数据一致和相互通信的
(5)在SAN Appliance之上可方便的连接交换设备,实现超大规模Fabric结构的SAN
因为系统保持了标准的SAN结构,为系统的扩展和互连提供了技术保障,所以在SAN Appliance之上可方便的连接交换设备,实现超大规模Fabric结构的SAN
B非对称式虚拟存储系统
图2
图2非对称式虚拟存储系统示意图
在图2所示的非对称式虚拟存储系统结构图中,网络中的每一台主机和虚拟存储管理设备均连接到磁盘阵列,其中主机的数据路径通过FC交换设备到达磁盘阵列;虚拟存储设备对网络上连接的磁盘阵列进行虚拟化 *** 作,将各存储阵列中的LUN虚拟为逻辑带区集(Strip),并对网络上的每一台主机指定对每一个Strip的访问权限(可写,可读,禁止访问)当主机要访问某个Strip时,首先要访问虚拟存储设备,读取Strip信息和访问权限,然后再通过交换设备访问实际的Strip中的数据在此过程中,主机只会识别到逻辑的strip,而不会直接识别到物理硬盘这种方案具有如下特点:
(1)将不同物理硬盘阵列中的容量进行逻辑组合,实现虚拟的带区集,将多个阵列控制器端口绑定,在一定程度上提高了系统的可用带宽
(2)在交换机端口数量足够的情况下,可在一个网络内安装两台虚拟存储设备,实现Strip信息和访问权限的冗余
但是该方案存在如下一些不足:
(1)该方案本质上是带区集——磁盘阵列结构,一旦带区集中的某个磁盘阵列控制器损坏,或者这个阵列到交换机路径上的铜缆,GBIC损坏,都会导致一个虚拟的LUN离线,而带区集本身是没有容错能力的,一个LUN的损坏就意味着整个Strip里面数据的丢失
(2)由于该方案的带宽提高是通过阵列端口绑定来实现的,而普通光纤通道阵列控制器的有效带宽仅在40MB/S左右,因此要达到几百兆的带宽就意味着要调用十几台阵列,这样就会占用几十个交换机端口,在只有一两台交换机的中小型网络中,这是不可实现的
(3)由于各种品牌,型号的磁盘阵列其性能不完全相同,如果出于虚拟化的目的将不同品牌,型号的阵列进行绑定,会带来一个问题:即数据写入或读出时各并发数据流的速度不同,这就意味着原来的数据包顺序在传输完毕后被打乱,系统需要占用时间和资源去重新进行数据包排序整理,这会严重影响系统性能
4 数据块虚拟与虚拟文件系统
以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统
数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式
虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题通过对不同的站点指定不同的访问权限,保证网络文件的安全在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式
虚拟存储技术和这门课的结合点
本学期的这门课中,所涉及的虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的 *** 作系统中的资源转换技术
基本思想:程序,数据,堆栈的大小可以超过内存的大小, *** 作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术
目的:提高内存利用率
管理方式
A 请求式分页存储管理
在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面
B 请求式分段存储管理
为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理
网络存储技术是基于数据存储的一种通用网络术语。网络存储结构大致分为三种:直连式存储(DAS:DirectAttachedStorage)、网络存储设备(NAS:NetworkAttachedStorage)和存储网络(SAN:StorageAreaNetwork)。
直连式存储(DAS):这是一种直接与主机系统相连接的存储设备,如作为服务器的计算机内部硬件驱动。到目前为止,DAS仍是计算机系统中最常用的数据存储方法。
网络存储设备(NAS):NAS是一种采用直接与网络介质相连的特殊设备实现数据存储的机制。由于这些设备都分配有IP地址,所以客户机通过充当数据网关的服务器可以对其进行存取访问,甚至在某些情况下,不需要任何中间介质客户机也可以直接访问这些设备。
存储网络(SAN):SAN是指存储设备相互连接且与一台服务器或一个服务器群相连的网络。其中的服务器用作SAN的接入点。在有些配置中,SAN也与网络相连。SAN中将特殊交换机当作连接设备。它们看起来很像常规的以太网络交换机,是SAN中的连通点。SAN使得在各自网络上实现相互通信成为可能,同时并带来了很多有利条件。
实验16 Windows环境下的文件服务器配置2007年06月12日 星期二 上午 09:001 实验目的与要求
(1) 学会安装和配置文件服务器。
(2) 学会服务器端共享文件夹的配置和管理。
(3) 学会客户端访问共享文件夹的方法。
(4) 学会分布式文件系统的设置方法。
(5) 实验学时:2
2 实验相关理论与知识
计算机网络的基本功能是在计算机间共享信息,文件共享可以说是最基本、最普遍的一种网络服务。虽然越来越多的用户购置专用文件服务器(如NAS),但是通用 *** 作系统提供的文件服务器功能也非常实用,完全能满足一般的文件共享需求,下面主要介绍Windows Server 2003文件服务器的配置、管理和应用。
文件服务器负责共享资源的管理和传送接收,管理存储设备(硬盘、光盘、磁带)中的文件,为网络用户提供文件共享服务,也称文件共享服务器。除了文件管理功能之外,文件服务器还要提供配套的磁盘缓存、访问控制、容错等功能。部署文件服务器,主要要考虑以下3个因素。
·存取速度:快速存取服务器上的文件,例如可提供磁盘缓存加速文件读取。
·存储容量:要有足够的存储空间以容纳众多网络用户的文件,可使用磁盘阵列。
·安全措施:实现网络用户访问控制,确保文件共享安全。
文件服务器主要有两类解决方案,一类是专用文件服务器,另一类是使用PC服务器或PC计算机组建的通用文件服务器。
专用文件服务器是专门设计成文件服务器的专用计算机,以前主要是运行 *** 作系统、提供网络文件系统的大型机、小型机,现在的专用文件服务器则主要指具有文件服务器的网络存储系统,如NAS和 SAN。NAS独立于 *** 作系统平台,可支持多种 *** 作系统和网络文件系统,提供集中化的网络文件服务器和存储环境,比一般的文件服务器的功能更强大,可看作是专用存储服务器,可为那些访问和共享大量文件系统数据的用户提供高效、性能价格比优异的解决方案。SAN全称存储区域网络,是一种用户存储服务的特殊网络,通常由磁盘阵列、光盘库、磁带库和光纤交换机组成。NAS可作为独立的文件服务器,提供文件级的数据访问功能,更适合文件共享。而SAN提供数据块级的数据访问功能,更适合数据库和海量数据。
目前一般用户使用PC服务器或PC计算机,通过网络 *** 作系统来提供文件服务,UNIX、Linux、Novell、 Windows等 *** 作系统都可提供文件共享服务。Windows网络 *** 作系统,如Windows NT Server、Windows2000 Server和最新的Windows Server 2003由于 *** 作管理简单、功能强大,在中小用户群中的普及率非常高,许多文件服务器都运行Windows网络 *** 作系统。下面将重点以Windows Server 2003为例介绍文件服务器的配置、管理和应用。
3 实验环境与设备
C/S模式的网络环境,包括一台Windows XP客户机和一台Windows Server 2003服务器。
两种可选的物理拓扑(交叉线连接或通过集线器/交换机用直连线连接)。
4 实验内容与步骤
40 服务器的基本网络配置,包括IP地址为“192168105XX”、网关为“192168105254”等。(注:“XX”代表你配置机器的主机编号,“nXX”代表你的服务器主机名,例如你坐在5号机上则“XX”代表“05”,“1XX”代表“105”,配置此机的IP地址为“1921681055”、主机名为“n05”,下同)。
41 安装和配置文件服务器
文件服务器提供网络上的中心位置,可供存储文件并通过网络与用户共享文件。当用户需要重要文件时,可以访问文件服务器上的文件,而不必在各自独立的计算机之间传送文件。如果网络用户需要对相同文件和可通过网络访问的应用程序的访问权限,就要将该计算机配置为文件服务器。默认情况下,在安装Windows Server 2003系统时,将自动安装“Microsoft网络的文件和打印共享”网络组件。如果没有该组件,可通过网络连接属性对话框安装。
1.准备工作
在部署文件服务器之前,应当做好以下准备工作。
·划出专门的硬盘分区(卷)用于提供文件共享服务,而且要保证足够的存储空间,必要时使用磁盘阵列。
·磁盘分区(卷)使用NTFS文件系统,因为FAT32缺乏安全性,而且不支持文件和文件夹压缩、磁盘配额、文件加密或单个文件权限等重要特性。
提示:使用Windows Server 2003自带的工具即可将FAT32转换成NTFS格式。该工具名为Convertexe,位于Windows安装目录下的System32目录中。在命令行状态运行该工具即可,如Convert E:/FS:NTFS。
·确定是否要启用磁盘配额,以限制用户使用的磁盘存储空间。
·确定是否要使用索引服务,以提供更快速、更便捷的搜索服务。
2.配置文件服务器
只要将Windows Server 2003计算机上的某个文件夹共享出来,就会自动安装文件服务器,也可通过“配置您的服务器向导”工具来安装文件服务器角色。这两种方法的差别是,第二种方法提供更多的选项,并在程序菜单中提供文件服务器管理台工具。这里介绍采用第二种方法的基本步骤。
(1) 启动“配置您的服务器向导”工具。默认情况下,登录Windows Server 2003时将自动启动“管理您的服务器”(也可从控制面板中选择→),单击。另一种方法是直接从控制面板中选择→→。单击按钮。
(2) 在界面中选择,单击按钮。
(3) 在界面中,如果的状态为“否”,就单击,然后单击。
注意:如果的状态为“是”,就单击,再单击按钮打开界面,并选择复选框,即可删除文件服务器角色,这样该服务器上的文件和文件夹就不再共享,依赖于这些共享资源的网络用户、程序或宿主都将无法与它们连接。
(4) 出现对话框中,为服务器上所有NTFS分区设置默认的磁盘配额。勾选和。单击按钮。默认情况下是没有启用磁盘配额。
(5) 出现对话框,确定是否要使用索引服务。单击按钮。一般情况下不需索引服务,只有在用户要经常搜索该服务器上的文件内容时才启用它。
(6) 出现对话框,查看和确认已经选择的选项,单击按钮。
本例中有“设置默认磁盘配额”、“安装文件服务器管理”和“运行共享文件夹向导来添加一个新的共享文件夹或共享已有文件夹”等选项。
(7) 自动完成相关配置后,出现共享文件夹向导,根据提示配置共享文件夹以供其他用户共享。只有配置了共享文件夹之后,文件服务器才能建立。
(8) 单击按钮,出现对话框,指定要共享的文件夹路径。可通过在C盘目录下新建一个作为共享目录,此时输入框中将出现(如果C盘中已经建立过此文件夹,才可以在此输入框中直接输入)。
(9)单击按钮,出现对话框,指定共享名。
(10) 单击按钮,出现对话框,指定共享权限为管理员有完全访
问权限;其他用户有只读访问权限,单击按钮。这里提供了几种预置的权限,也可以自定义权限。
(11)对话框中显示共享成功,给出新建共享文件夹的信息。如果要继续设置其他共享文件夹,则选中下面的复选框。单击按钮,。
至此文件服务器配置就完成了。接下来可执行各项文件管理任务。
3.文件服务器管理工具(以下方法至少掌握一种)
Windows Server 2003提供了用于文件服务器配置管理的多种工具。
·文件服务器管理控制台:打开“管理您的服务器”工具,在区域单击,打开该控制台。要使用“配置您的服务器向导”工具安装文件服务器,可从程序菜单中选择→命令打开该控制台。
·“共享文件夹”管理工具:也可通过“计算机管理”工具中的“共享文件夹”管理工具来执行共享文件夹的配置管理,从程序菜单中选择→,展开节点即可。
·Windows资源管理器:可直接将文件夹配置为共享文件夹。
·命令行工具:如net share可显示有关本地计算机上全部共享资源的信息。
1 虚拟存储技术产
虚拟化技术并件新技术,发展,应该说随着计算机技术发展发展起,早始于70代由于存储容量,特别内存容量本非高,容量,于型应用程序或程序应用受限制克服限制,采用虚拟存储技术,典型应用虚拟内存技术随着计算机技术及相关信息处理技术断发展,存储需求越越需求刺激各种新技术现,比磁盘性能越越,容量越越量型信息处理系统,单磁盘能满足需要,情况存储虚拟化技术发展起发展程由几阶段几种应用首先磁盘条带集(RAID,带容错)技术,物理磁盘通定逻辑关系集合起,容量虚拟磁盘随着数据量断增加数据用性要求断提高,种新存储技术应运,存储区域网络(SAN)技术SAN广域化则旨存储设备实现种公用设施,任何员,任何主机都随随获取各自想要数据目前讨论比较包括iSCSI,FC Over IP 等技术,由于些相关标准没终确定,存储设备公用化,存储网络广域化逆转潮流
2 虚拟存储概念
所谓虚拟存储,存储介质模块(硬盘,RAID)通定手段集管理起,所存储模块存储池(Storage Pool)统管理,主机工作站角度,看硬盘,区或者卷,象超容量(1T)硬盘种种,存储设备统管理起,使用者提供容量,高数据传输性能存储系统,称虚拟存储
虚拟存储类
目前虚拟存储发展尚统标准,虚拟化存储拓扑结构讲主要两种式:即称式与非称式称式虚拟存储技术指虚拟存储控制设备与存储软件系统,交换设备集整体,内嵌网络数据传输路径;非称式虚拟存储技术指虚拟存储控制设备独立于数据传输路径外虚拟化存储实现原理讲两种式;即数据块虚拟与虚拟文件系统具体:
A称式虚拟存储
图1
图1称式虚拟存储解决案示意图
图1所示称式虚拟存储结构图,存储控制设备 High Speed Traffic Directors(HSTD)与存储池系统Storage Pool集起,组SAN Appliance看该案存储控制设备HSTD主机与存储池数据交换程起核作用该案虚拟存储程:由HSTD内嵌存储管理系统存储池物理硬盘虚拟逻辑存储单元(LUN),并进行端口映射(指定某LUN能哪些端口所见),主机端各见存储单元映射 *** 作系统识别盘符主机向SAN Appliance写入数据,用户需要数据写入位置指定自映射盘符(LUN),数据经HSTD高速并行端口,先写入高速缓存,HSTD存储管理系统自完目标位置由LUN物理硬盘转换,程用户见虚拟逻辑单元,关每LUN具体物理组织结构该案具主要特点:
(1)采用容量高速缓存,显著提高数据传输速度
缓存存储系统广泛采用位于主机与存储设备间I/O路径间介质主机存储设备读取数据,与前数据存储位置相连数据读缓存,并调用数据保留缓存;主机读数据,几率能够缓存找所需要数据直接缓存读缓存读取数据速度受电信号传播速度影响(等于光速),高于硬盘读数据盘片机械转速度主机向存储设备写入数据,先数据写入缓存,待主机端写入作停止,再缓存数据写入硬盘,同高于直接写入硬盘速度
(2)端口并行技术,消除I/O瓶颈
传统FC存储设备控制端口与逻辑盘间固定关系,访问块硬盘能通控制控制器端口称式虚拟存储设备,SAN Appliance存储端口与LUN关系虚拟,说台主机通存储端口(8)并发访问同LUN;光纤通道100MB/带宽前提,并行工作端口数量越,数据带宽越高
(3)逻辑存储单元提供高速磁盘访问速度
视频应用环境,应用程序读写数据固定数据块单位(512byte1MB间)存储系统保证应用程序带宽需求,往往设计传输512byte数据块才能达其佳I/O性能传统SAN结构,容量需求增,唯解决办块磁盘(物理或逻辑)绑定带区集,实现容量LUN称式虚拟存储系统,主机提供真超容量,高性能LUN,用带区集式实现性能较差逻辑卷与带区集相比,Power LUN具优势,块I/O block真存储系统所接受,效提高数据传输速度;并且由于没带区集处理程,主机CPU解除负担,提高主机性能
(4)HSTD系统容错性能
称式虚拟存储系统,HSTD数据I/O必经,存储池数据存放由于存储池数据具容错机制保障安全,用户自想HSTD否容错保护象许型存储系统,熟称式虚拟存储系统,HSTD配制,每HSTD间通SAN Appliance内嵌网络管理服务实现缓存数据致相互通信
(5)SAN Appliance便连接交换设备,实现超规模Fabric结构SAN
系统保持标准SAN结构,系统扩展互连提供技术保障,所SAN Appliance便连接交换设备,实现超规模Fabric结构SAN
B非称式虚拟存储系统
图2
图2非称式虚拟存储系统示意图
图2所示非称式虚拟存储系统结构图,网络每台主机虚拟存储管理设备均连接磁盘阵列,其主机数据路径通FC交换设备达磁盘阵列;虚拟存储设备网络连接磁盘阵列进行虚拟化 *** 作,各存储阵列LUN虚拟逻辑带区集(Strip),并网络每台主机指定每Strip访问权限(写,读,禁止访问)主机要访问某Strip,首先要访问虚拟存储设备,读取Strip信息访问权限,再通交换设备访问实际Strip数据程,主机识别逻辑strip,直接识别物理硬盘种案具特点:
(1)同物理硬盘阵列容量进行逻辑组合,实现虚拟带区集,阵列控制器端口绑定,定程度提高系统用带宽
(2)交换机端口数量足够情况,网络内安装两台虚拟存储设备,实现Strip信息访问权限冗余
该案存些足:
(1)该案本质带区集——磁盘阵列结构,旦带区集某磁盘阵列控制器损坏,或者阵列交换机路径铜缆,GBIC损坏,都导致虚拟LUN离线,带区集本身没容错能力,LUN损坏意味着整Strip面数据丢失
(2)由于该案带宽提高通阵列端口绑定实现,普通光纤通道阵列控制器效带宽仅40MB/S左右,要达几百兆带宽意味着要调用十几台阵列,占用几十交换机端口,两台交换机型网络,实现
(3)由于各种品牌,型号磁盘阵列其性能完全相同,于虚拟化目同品牌,型号阵列进行绑定,带问题:即数据写入或读各并发数据流速度同,意味着原数据包顺序传输完毕打乱,系统需要占用间资源重新进行数据包排序整理,严重影响系统性能
4 数据块虚拟与虚拟文件系统
拓扑结构角度析称式与非称式虚拟存储案异同,实际虚拟化存储实现原理讲两种式;即数据块虚拟与虚拟文件系统
数据块虚拟存储案着重解决数据传输程冲突延问题交换机组型Fabric结构SAN,由于台主机通交换机端口访问存储设备,延数据块冲突问题非严重数据块虚拟存储案利用虚拟端口并行技术,台客户机提供极高带宽,限度减少延与冲突发,实际应用,数据块虚拟存储案称式拓扑结构表现形式
虚拟文件系统存储案着重解决规模网络文件共享安全机制问题通同站点指定同访问权限,保证网络文件安全实际应用,虚拟文件系统存储案非称式拓扑结构表现形式
虚拟存储技术门课结合点
本期门课,所涉及虚拟存储技术,实际虚拟存储技术面,特指CPU间外存空间换取昂贵内存空间 *** 作系统资源转换技术
基本思想:程序,数据,堆栈超内存, *** 作系统程序前使用部保留内存,其部保存磁盘,并需要内存磁盘间态交换,虚拟存储器支持道程序设计技术
目:提高内存利用率
管理式
A 请求式页存储管理
进程始运行前,装入全部页面,装入或零页面,根据进程运行需要,态装入其页面;内存空间已满,需要装入新页面,则根据某种算淘汰某页面,便装入新页面
B 请求式段存储管理
能实现虚拟存储,段式逻辑址空间程序段运行并全部装入内存,同请求式页存储管理,首先调入或若干程序段运行,运行程调用哪段,根据该段度内存配连续区给使用若内存没足够空闲区,则考虑进行段紧凑或某段或某些段淘汰,种存储管理技术称请求式段存储管理
现团IDC网45元/美空间团购,便宜口碑
2.批处理、 *** 作系统、实 *** 作系统各特征 3.道程序设计与重处理何区别 4.讨论 *** 作系统哪些角度发何统起 5.现代 *** 作系统运行环境何要求 3 2 1.说进程由伪处理机执行程序 2.比较进程与程序联系区别 3.我说程序并发执行导致终结失封闭性所程序都立试举例说明 4.临界区举临界区例 5.线程线程进程何区别 6.某高校计算机系设网络课并安排机实习假设机房共2m台机器2n 名选该课规定: ① 每2 组组各占台机器协同完机实习; ② 组2 齐并且机房空闲机器该组才能进入机房; ③ 机实习由名教师检查检查完毕组同离机房 试用P、V *** 作模拟机实习程 7.今三并发进程RMP共享循环使用缓冲区B缓冲区B 共N单元进程R 负责输入设备读信息每读字符存放缓冲区B 单元;进程M负责处理读入字符若发现读入字符空格符则改;进程P负责处理字符取并打印输缓冲区单元字符进程P 取则用存放读入字符请用PV *** 作同步机制写能确并发执行程序 8.写Reader-Writer 问题算避免由于断Reader 现使Writer 限期等待 9 设计C 程序(嵌入汇编语言)忙等待式实现信号量P、V *** 作 10 设计C 程序实现产者-消费者问题 说明:8-10 课外实践练习 4 3 1.进程调度功能哪些 2.进程调度机哪几种 3.说进程文切换程文切换程序能破坏进程文结构 4.比较用几种调度算 5.假设四道作业进入刻与执行间所示: 作业号 进入刻() 执行间() 1 1000 04 2 1010 10 3 1020 06 4 1030 02 单道程序环境别采用先先服务短作业优先调度算试说明调度顺序及平均周转间 5 4 1.虚拟存储器其特点 2.态区管理用内存配算哪几种比较各自优缺点 3.页式管理静态页式管理实现虚存 4.请求页式管理哪几种用页置换算比较优缺点 5.段式管理与页式管理何区别 6.请求页系统采用LRU 页面置换算假进程页面访问顺序4 32143543215配给该进程物理块数M 别3 4 请计算访问程发缺页数缺页率比较所结 7.设计算机4 页框装入间、近访问间每页访问位、修改位所示(间钟周期单位): 页 装入间 近访问间 访问位A 修改位M 0 126 279 0 0 1 230 260 1 0 2 120 272 1 1 3 160 280 1 1 1)NRU 置换哪页 2)LRU 置换哪页 3)FIFO 置换哪页 8.已知段表: 段号 基址 度 合(0)/非(1) 0 219 600 0 1 2300 14 0 2 90 100 1 3 1327 580 0 4 1952 96 0 段存储管理系统运行列逻辑址物理址 (1)0430 (2)110 (3)111 (4)2500 (5)3400 (6)4112 6 5 1.系统调用系统调用与般程调用何区别 2.Linux *** 作系统引起进程调度机哪些 3.简述 shell 命令Linux 实现程 4.Linux 系统进程候处理接收软断信号进程接收软断信号放 5.Windows 2000/xp 哪些情况进行线程优先级提升 6.试描述使用Win32 API 实现线程同步般 7 6 1.文件、文件系统文件系统哪些功能 2.文件物理结构哪几种说串联文件结构适合随机存取 3.文件目录文件目录包含哪些信息 4.实现文件系加快文件目录检索速度利用文件控制块解假设目录文件存放磁盘每盘块512 字节文件控制块占64 字节其文件名占8 字节通文件控制块解两部第部占10 字节(包括文件名文件内部号)第二部占 56 字节(包括文件内部号文件其描述信息) ① 假设某目录文件共254 文件控制块试别给采用解前解查找该目录文件某文件控制块平均访问磁盘数 ② 般若目录文件解前占用 n 盘块解改用 m 盘块存放文件名文件内部号部请组访问磁盘数减少条件 5.创建文件能发哪几种情况应何处理 6.文件存取控制式哪几种比较优缺点 7.文件系统采用级索引结构搜索文件内容设块512 字节每块号3 字节考虑逻辑块号物理块所占位置别求二级索引三级索引寻址文件度 8 7 1.设备管理目标功能 2.I/O 缓冲要引入I/O 缓冲 3.设备驱程序要设备驱程序用户进程使用设备驱程序 4.单缓冲与双缓冲情况系统块数据处理间别 max(C,T)+M max(C,T)其C:CPU 计算间T:数据I/O 控制器缓冲区传输间M:数据缓冲区用户工作区传输间 5.要引入设备独立性何实现设备独立性 6.某移臂磁盘柱面由外向顺序编号假定前磁停100 号柱面且移臂向向现表1 所示请求序列等待访问磁盘: 表1 访问磁盘请求序列 请求序 1 2 3 4 5 6 7 8 9 10 柱面号 190 10 160 80 90 125 30 20 140 25 答面问题: ① 写别采用短查找间优先算电梯调度算实际处理述请求序 ② 针本题比较述两种算移臂所花间(忽略移臂改向间)言哪种算更合适简要说明 9 8 1.ext2 文件系统磁盘I 节点内存I 节点 2.Linux 系统用于打文件系统调用open 格式 fd = open( pathname, flags) 其pathname 欲打文件路径名flags 指示打式(读、写)open 返值文件描述符 1)给open 实现算 2)说明用户文件描述符表、系统打文件表与I 节点表作用及三者间关系 3.Linux 系统文件共享哪两种式 4.说明Linux 虚拟文件系统VFS 工作原理 5.说明Linux 虚拟文件系统VFS 查找文件程 6.块设备驱程序 7.别给文件磁盘索引节点与内存索引节点引用数能于1情况 10 9 1.死锁给产死锁必要条件 2.三进程P1、P2 P3 并发工作进程P1 需用资源S3 S1;进程P2 需用资源S1 S2;进程P3 需用资源S2 S3答: (1) 若资源配加限制发情况 (2) 保证进程确工作应采用资源配策略 3.某系统R1R2R3 三种资源T0 刻P1P2P3P4 四进程资源占用需求情况表1 所示刻系统用资源向量(2, 1, 2)问题: ① 系统各种资源总数刻各进程各资源需求数目用向量或矩阵表示; ② P1 P2 均发资源请求向量Request(1, 0, 1)保持系统安全性应该何配资源给两进程说明所采用策略原; ③ ②两请求立刻满足系统刻否处于死锁状态 表1 T0 刻P1P2P3P4 四进程资源占用需求情况表 Maximum demand Current allocation R1 R2 R3 R1 R2 R3 P1 3 2 2 1 0 0 P2 6 1 3 4 1 1 P3 3 1 4 2 1 1 P4 4 2 2 0 0 2 4.解决死锁问题几种哪种容易实现哪种使资源利用率高
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)