Java中国象棋博弈程序探秘[5]——搜索算法

Java中国象棋博弈程序探秘[5]——搜索算法,第1张

搜索算法

转载请保留作者信息:

作者:88250

Blog:http:/blog.csdn.net/DL88250

MSN & Gmail & QQ:DL88250@gmail.com

搜索是电脑棋手AI的核心,有效的搜索算法很关键。本文给出了一些常用的搜索算法代码,以及这些算法的改进。例如配合置换表,历史启发表,开局库。算法的深入学习可以参考注释里给出的地址 : )

/*

 * @(#)SearchEngine.java

 * Author: 88250 <DL88250@gmail.com>, http://blog.csdn.net/DL88250

 * Created on May 24, 2008, 10:51:52 AM

 * 

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation; either version 3 of the License, or

 * (at your option) any later version.

 * 

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU Library General Public License for more details.

 * 

 * You should have received a copy of the GNU General Public License

 * along with this program; if not, write to the Free Software

 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

 */

package cn.edu.ynu.sei.chinesechess.infrastructure.search;



import cn.edu.ynu.sei.chinesechess.infrastructure.common.Motion;

import cn.edu.ynu.sei.chinesechess.infrastructure.common.Situation;

import cn.edu.ynu.sei.chinesechess.infrastructure.search.TranspositionTable.NodeType;

import java.util.Collections;

import java.util.List;



/**

 * This class descripts some search algorithms of game tree.

 * @author 88250 <DL88250@gmail.com>, http://blog.csdn.net/DL88250

 * @version 1.1.2.6, Jun 7, 2008

 */

public class SearchEngine {



    /**

     * value while win a game

     */

    public static final int WIN = 54;

    /**

     * chessboard situation

     */

    public Situation situation;

    /**

     * the best move

     */

    public Motion bestMotion;

    /**

     * situation libaray

     */

    private Book book = new Book();

    /**

     * default search depth

     */

    public static int SEARCH_DEPTH = 5;



    /**

     * For Performance Test.

     * @param args should be <code>null</code>

     */

    public static void main(String[] args) {

        SearchEngine instance;

        instance = new SearchEngine(new Situation());



        System.out.println("Getting start search!");

        long startTime = System.nanoTime();

        //instance.basicAlphaBetaSearch(SEARCH_DEPTH, -WIN, WIN);

        //instance.alphaBetaWithHistoryHeuristicSearch(SEARCH_DEPTH, -WIN, WIN);

        //instance.alphaBetaWithTranspositonSearch(SEARCH_DEPTH, -WIN, WIN);

        //instance.principalVariationSearch(SEARCH_DEPTH, -WIN, WIN);

        //instance.principalVariationWithHHSearch(SEARCH_DEPTH, -WIN, WIN);

        instance.negaScoutWithHHTTSearch(SEARCH_DEPTH, -WIN, WIN);

        long estimatedTime = System.nanoTime() - startTime;



        System.out.println("Evaluated node count: " + Situation.nodeEvaluatedCount);

        System.out.println("TT hit count: " + TranspositionTable.hashHitCount);

        System.out.println("Best motion: " + instance.bestMotion.toString());

        System.out.println("Elapsed Time: " + estimatedTime / 1000000000.0 + "s");

        System.out.println("");

    }



    /**

     * Finds the best move on the specified chessboard situation.

     * @param boardSituation the specified chessboard situation

     * @return the evaluate value

     */

    public int findTheBestMove(int[][] boardSituation) {

        TranspositionTable.initHashCode(boardSituation);

        return negaScoutWithHHTTSearch(SEARCH_DEPTH, -WIN, WIN);

    }



    /**

     * Search the FEN book for a good move.

     * @return if find a move in the book, retusns <code>true</code>,

     * otherwise, returns <code>false</code>

     */

    public boolean bookSearch() {

        List<Motion> motions = situation.generatePossibleMoves();

        for (Motion motion : motions) {

            situation.makeMove(motion.fromX, motion.fromY, motion.toX, motion.toY);

            if (book.exists(situation.chessboard)) {

                // this situation exists in book!

                bestMotion = motion;

                situation.unMove();

                return true;

            }

            situation.unMove();

        }



        return false;

    }



    /**

     * Basic Alpha-Beta search method.

     * @param depth depth of search 

     * @param alpha min value to max value, the "floor"

     * @param beta  max value to min value, the "ceiling"

     * @return if game is over, returns <code>-WIN</code>, if depth arrived, 

     * returns evaluat value(leaf node value), otherwise, returns bound(

     * determined by cut-off)

     */

    final int basicAlphaBetaSearch(int depth, int alpha, int beta) {

        if (situation.gameOver() != 0) {

            return -WIN;

        }



        if (depth <= 0) {

            return situation.evaluate();

        }



        List<Motion> motions = situation.generatePossibleMoves();

        for (Motion motion : motions) {

            situation.makeMove(motion.fromX, motion.fromY, motion.toX, motion.toY);

            int score = -basicAlphaBetaSearch(depth - 1, -beta, -alpha);

            situation.unMove();

            if (score > alpha) {

                alpha = score;

                if (depth == SEARCH_DEPTH) {

                    bestMotion = motion;

                }

                if (alpha >= beta) {

                    return beta;

                }

            }

        }



        return alpha;

    }



    /**

     * Alpha-Beta with History Heuristic search method.

     * @param depth depth of search 

     * @param alpha min value to max value, the "floor"

     * @param beta  max value to min value, the "ceiling"

     * @return if game is over, returns <code>-WIN</code>, if depth arrived, 

     * returns evaluat value(leaf node value), otherwise, returns bound(

     * determined by cut-off)

     */

    @SuppressWarnings("unchecked")

    final int alphaBetaWithHistoryHeuristicSearch(int depth, int alpha, int beta) {

        if (situation.gameOver() != 0) {

            return -WIN;

        }



        if (depth <= 0) {

            return situation.evaluate();

        }



        List<Motion> motions = situation.generatePossibleMoves();

        // History heuristic

        if (depth < SEARCH_DEPTH) {

            for (Motion motion : motions) {

                motion.value = HistoryHeuristicTable.getValue(motion.fromX,

                                                              motion.fromY,

                                                              motion.toX, motion.toY);

            }

            // XXX do sort algorithm by myself for performance?

            Collections.sort(motions);

        }



        for (Motion motion : motions) {

            situation.makeMove(motion.fromX, motion.fromY, motion.toX, motion.toY);

            int score = -alphaBetaWithHistoryHeuristicSearch(depth - 1, -beta, -alpha);

            situation.unMove();

            if (score > alpha) {

                alpha = score;

                HistoryHeuristicTable.setValue(motion.fromX, motion.fromY,

                                               motion.toX, motion.toY,

                                               (HistoryHeuristicTable.getValue(

                                               motion.fromX,

                                               motion.fromY,

                                               motion.toX,

                                               motion.toY) +

                                               2 << depth));

                if (depth == SEARCH_DEPTH) {

                    bestMotion = motion;

                }

                if (alpha >= beta) {

                    return beta;

                }

            }

        }



        return alpha;

    }



    /**

     * Principal Variation SearchEngine method.

     * <p>Probably the best of the alpha-beta variants, this goes by 

     * several names: <em><b>NegaScout</b></em>, <em>Principal Variation SearchEngine</em>,

     * or <em>PVS</em> for short. The idea is that alpha-beta search works 

     * best if the first recursive search is likely to be the one 

     * with the best score. Techniques such as sorting the move list

     * or using a best move stored in the hash table make it especially

     * likely that the first move is best. If it is, we can search

     * the other moves more quickly by using the assumption that

     * they are not likely to be as good. So PVS performs that first

     * search with a normal window, but on subsequent searches uses a

     * zero-width window to test each successive move against the first

     * move. Only if the zero-width search fails does it do a normal search. 

     * </p>

     * <p>

     * More detalis, please visits:<br>

     * <a href="http://www.ics.uci.edu/~eppstein/180a/index.html">

     * ICS 180, Winter 1999: Strategy and board game programming</a><br>

     * or Read this paper:<br>

     * Alexander Reinefild, AN IMPROVEMENT TO THE SCOUT TREE SEARCH ALGORITHM,

     * 1983

     * </p>

     * @param depth depth search 

     * @param alpha min value to max value, the "floor"

     * @param beta  max value to min value, the "ceiling"

     * @return if game is over, returns <code>-WIN</code>, if depth arrived, 

     * returns evaluat value(leaf node value), otherwise, returns bound(

     * determined by cut-off)

     */

    final int principalVariationSearch(int depth, int alpha, int beta) {

        if (situation.gameOver() != 0) {

            return -WIN;

        }



        if (depth <= 0) {

            return situation.evaluate();

        }



        List<Motion> motions = situation.generatePossibleMoves();

        situation.makeMove(motions.get(0).fromX, motions.get(0).fromY,

                           motions.get(0).toX, motions.get(0).toY);

        int best = -principalVariationSearch(depth - 1, -beta, -alpha);

        situation.unMove();

        if (depth == SEARCH_DEPTH) {

            bestMotion = motions.get(0);

        }

        for (int i = 1; i < motions.size(); i++) {

            if (best < beta) {

                if (best > alpha) {

                    alpha = best;

                }

                Motion motion = motions.get(i);

                situation.makeMove(motion.fromX, motion.fromY, motion.toX, motion.toY);

                int score = -principalVariationSearch(depth - 1, -alpha - 1, -alpha);

                if (score > alpha && score < beta) {

                    // fail high, re-search

                    best = -principalVariationSearch(depth - 1, -beta, -score);

                    if (depth == SEARCH_DEPTH) {

                        bestMotion = motion;

                    }

                } else if (score > best) {

                    best = score;

                    if (depth == SEARCH_DEPTH) {

                        bestMotion = motion;

                    }

                }

                situation.unMove();

            }

        }



        return best;

    }



    /**

     * Principal Variation with History Heuristic SearchEngine method(fail-soft version).

     * @param depth depth search 

     * @param alpha min value to max value, the "floor"

     * @param beta  max value to min value, the "ceiling"

     * @return if game is over, returns <code>-WIN</code>, if depth arrived, 

     * returns evaluat value(leaf node value), otherwise, returns bound(

     * determined by cut-off)

     */

    @SuppressWarnings("unchecked")

    final int principalVariationWithHHSearch(int depth, int alpha, int beta) {

        if (situation.gameOver() != 0) {

            return -WIN;

        }



        if (depth <= 0) {

            return situation.evaluate();

        }



        List<Motion> motions = situation.generatePossibleMoves();

        // History heuristic

        if (depth < SEARCH_DEPTH) {

            for (Motion motion : motions) {

                motion.value = HistoryHeuristicTable.getValue(motion.fromX,

                                                              motion.fromY,

                                                              motion.toX, motion.toY);

            }

            Collections.sort(motions);

        }



        Motion motion = motions.get(0);

        situation.makeMove(motion.fromX, motion.fromY,

                           motion.toX, motion.toY);

        int best = -principalVariationWithHHSearch(depth - 1, -beta, -alpha);

        situation.unMove();

        if (depth == SEARCH_DEPTH) {

            bestMotion = motion;

            int oldValue = HistoryHeuristicTable.getValue(motion.fromX,

                                                          motion.fromY,

                                                          motion.toX,

                                                          motion.toY);

            HistoryHeuristicTable.setValue(motions.get(0).fromX,

                                           motions.get(0).fromY,

                                           motions.get(0).toX,

                                           motions.get(0).toY,

                                           (oldValue + 2 << depth));

        }

        for (int i = 1; i < motions.size(); i++) {

            if (best < beta) {

                if (best > alpha) {

                    alpha = best;

                }

                motion = motions.get(i);

                situation.makeMove(motion.fromX, motion.fromY, motion.toX, motion.toY);

                int score = -principalVariationWithHHSearch(depth - 1, -alpha - 1,

                                                            -alpha);

                if (score > alpha && score < beta) {

                    best = -principalVariationWithHHSearch(depth - 1, -beta, -score);

                    if (depth == SEARCH_DEPTH) {

                        bestMotion = motion;

                    }

                } else if (score > best) {

                    int oldValue = HistoryHeuristicTable.getValue(motion.fromX,

                                                                  motion.fromY,

                                                                  motion.toX,

                                                                  motion.toY);

                    HistoryHeuristicTable.setValue(motion.fromX,

                                                   motion.fromY,

                                                   motion.toX,

                                                   motion.toY,

                                                   (oldValue + 2 << depth));

                    best = score;

                    if (depth == SEARCH_DEPTH) {

                        bestMotion = motion;

                    }

                }

                situation.unMove();

            }

        }



        return best;

    }



    /**

     * Alpha-Beta with Transposition Table search method.

     * @param depth depth search 

     * @param alpha min value to max value, the "floor"

     * @param beta  max value to min value, the "ceiling"

     * @return if game is over, returns <code>-WIN</code>, if depth arrived, 

     * returns evaluat value(leaf node value), otherwise, returns bound(

     * determined by cut-off)

     */

    final int alphaBetaWithTranspositonSearch(int depth, int alpha, int beta) {

        if (situation.gameOver() != 0) {

            return -WIN;

        }



        // lookup transposition table

        int score = TranspositionTable.lookup(depth, alpha, beta);

        if (score != 88250) {

            // hit the target!

            return score;

        }



        if (depth <= 0) {

            score = situation.evaluate();

            // save the node

            TranspositionTable.save(NodeType.exact, depth, score);

            return score;

        }



        NodeType hashItemType = NodeType.unknown;

        List<Motion> motions = situation.generatePossibleMoves();

        for (Motion motion : motions) {

            int toId = situation.makeMove(motion.fromX, motion.fromY, motion.toX,

                                          motion.toY);



            score = -alphaBetaWithTranspositonSearch(depth - 1, -beta, -alpha);

            situation.unMove();



            if (score > alpha) {

                alpha = score;

                hashItemType = NodeType.exact;

                if (depth == SEARCH_DEPTH) {

                    bestMotion = motion;

                }

                if (alpha >= beta) {

                    TranspositionTable.save(NodeType.lowerBound, depth, alpha);

                    return beta;

                }

            }

        }



        if (hashItemType != NodeType.unknown) {

            TranspositionTable.save(NodeType.exact, depth, alpha);

        } else {

            TranspositionTable.save(NodeType.upperBound, depth, alpha);

        }



        return alpha;

    }



    /**

     * NegaScout with History Heuristic and Transposition Table search.

     * @param depth depth search 

     * @param alpha min value to max value, the "floor"

     * @param beta  max value to min value, the "ceiling"

     * @return if game is over, returns <code>-WIN</code>, if depth arrived, 

     * returns evaluat value(leaf node value), otherwise, returns bound(

     * determined by cut-off)

     */

    @SuppressWarnings("unchecked")

    final int negaScoutWithHHTTSearch(int depth, int alpha, int beta) {

        if (situation.gameOver() != 0) {

            return -WIN;

        }



        // lookup transpositiont table

        int score = TranspositionTable.lookup(depth, alpha, beta);

        if (score != 88250) {

            // hit the target!

            return score;

        }



        if (depth <= 0) {

            score = situation.evaluate();

            TranspositionTable.save(NodeType.exact, depth, score);

            return score;

        }



        List<Motion> motions = situation.generatePossibleMoves();

        // History heuristic

        if (depth < SEARCH_DEPTH) {

            for (Motion motion : motions) {

                motion.value = HistoryHeuristicTable.getValue(motion.fromX,

                                                              motion.fromY,

                                                              motion.toX, motion.toY);

            }

            Collections.sort(motions);

        }



        int bestmove = 0;

        int a = alpha;

        int b = beta;

        int t;

        int oldValue;

        NodeType hashItemType = NodeType.unknown;

        for (int i = 0; i < motions.size(); i++) {

            Motion motion = motions.get(i);

            int toId = situation.makeMove(motion.fromX, motion.fromY, motion.toX,

                                          motion.toY);

            t = -negaScoutWithHHTTSearch(depth - 1, -b, -a);

            if (t > a && t < beta && i > 0) {

                a = -negaScoutWithHHTTSearch(depth - 1, -beta, -t);

                hashItemType = NodeType.exact;

                if (depth == SEARCH_DEPTH) {

                    bestMotion = motion;

                }

                bestmove = i;

            }

            situation.unMove();



            if (a < t) {

                hashItemType = NodeType.exact;

                a = t;

                if (depth == SEARCH_DEPTH) {

                    bestMotion = motion;

                }

            }

            if (a >= beta) {

                TranspositionTable.save(NodeType.lowerBound, depth, a);

                oldValue = HistoryHeuristicTable.getValue(motion.fromX,

                                                          motion.fromY,

                                                          motion.toX,

                                                          motion.toY);

                HistoryHeuristicTable.setValue(motion.fromX,

                                               motion.fromY,

                                               motion.toX,

                                               motion.toY,

                                               (oldValue + 2 << depth));

                return a;

            }

            b = a + 1;  // set a new numm window

        }

        oldValue = HistoryHeuristicTable.getValue(motions.get(bestmove).fromX,

                                                  motions.get(bestmove).fromY,

                                                  motions.get(bestmove).toX,

                                                  motions.get(bestmove).toY);

        HistoryHeuristicTable.setValue(motions.get(bestmove).fromX,

                                       motions.get(bestmove).fromY,

                                       motions.get(bestmove).toX,

                                       motions.get(bestmove).toY,

                                       (oldValue + 2 << depth));

        if (hashItemType != NodeType.unknown) {

            TranspositionTable.save(NodeType.exact, depth, alpha);

        } else {

            TranspositionTable.save(NodeType.upperBound, depth, alpha);

        }



        return a;

    }



    /**

     * Constructor with parameters.

     * @param situation the specified situation

     */

    public SearchEngine(Situation situation) {

        this.situation = situation;

    }

}

/*

 * @(#)Book.java

 * Author: 88250 <DL88250@gmail.com>, http://blog.csdn.net/DL88250

 * Created on Jun 5, 2008, 4:45:31 PM

 * 

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation; either version 3 of the License, or

 * (at your option) any later version.

 * 

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU Library General Public License for more details.

 * 

 * You should have received a copy of the GNU General Public License

 * along with this program; if not, write to the Free Software

 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

 */

package cn.edu.ynu.sei.chinesechess.infrastructure.search;



import cn.edu.ynu.sei.chinesechess.infrastructure.common.Situation;

import cn.edu.ynu.sei.chinesechess.infrastructure.fen.FEN;

import cn.edu.ynu.sei.chinesechess.infrastructure.fen.FENAccessor;

import java.util.HashMap;

import java.util.List;

import java.util.Map;



/**

 * Opening book, endgame book, or any chessboard situation book.

 * Currently, this class ONLY can read FEN file.

 * @author 88250 <DL88250@gmail.com>, http://blog.csdn.net/DL88250

 * @version 1.0.0.0, Jun 5, 2008

 */

final public class Book {



    /**

     * book situation hash map

     */

    public Map<Integer, FEN> hashMap = new HashMap<Integer, FEN>();



    /**

     * Packaged default constructor.

     */

    Book() {

        List<FEN> fens = FENAccessor.readFile("book_final");

        Integer hashCode = 0;

        for (FEN fen : fens) {

            hashCode = TranspositionTable.calcCurHashCode(fen.chessboard);

            hashMap.put(hashCode, fen);

        }

    }



    /**

     * This book exists the specified chessboard situation?

     * @param chessboard the specified chessboard

     * @return if exists, returns <code>true</code>, otherwise,

     * returns <code>false</code>

     */

    final public boolean exists(int[][] chessboard) {

        FEN f = hashMap.get(TranspositionTable.calcCurHashCode(chessboard));

        if (f != null && f.isBlackDone == false) {

            return true;

        }



        return false;

    }

}

/*

 * @(#)HistoryHeuristicTable.java

 * Author: 88250 <DL88250@gmail.com>, http://blog.csdn.net/DL88250

 * Created on May 29, 2008, 11:51:10 PM

 * 

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation; either version 3 of the License, or

 * (at your option) any later version.

 * 

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU Library General Public License for more details.

 * 

 * You should have received a copy of the GNU General Public License

 * along with this program; if not, write to the Free Software

 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

 */

package cn.edu.ynu.sei.chinesechess.infrastructure.search;



/**

 * A <em>History Heuristic Table</em> maintains all best motion in

 * the past.

 * ({@link cn.edu.ynu.sei.chinesechess.common.Motion#value})

 * @author 88250 <DL88250@gmail.com>, http://blog.csdn.net/DL88250

 * @version 1.0.1.4, Jun 7, 2008

 */

final class HistoryHeuristicTable {



    /**

     * hold all best moves

     */

    static int[][][][] holds = new int[9][10][9][10];

    /**

     * singleton

     */

    private static HistoryHeuristicTable instance = new HistoryHeuristicTable();



    /**

     * Gets the single instance of the class.

     * @return history heuristic instance

     */

    final public static HistoryHeuristicTable getInstance() {

        if (instance == null) {

            instance = new HistoryHeuristicTable();

        }



        return instance;

    }



    /**

     * Private default constructor.

     */

    private HistoryHeuristicTable() {

    }



    /**

     * Returns the history motion.

     * @param fromX x coordinate of which chessman do this move

     * @param fromY y coordinate of which chessman do this move

     * @param toX x coordinate of which chessman's destination

     * @param toY y coordinate of which chessman's destination

     * @return this move's value

     */

    final static int getValue(int fromX, int fromY, int toX, int toY) {

        return holds[fromX][fromY][toX][toY];

    }



    /**

     * Sets the history motion.

     * @param fromX x coordinate of which chessman do this move

     * @param fromY y coordinate of which chessman do this move

     * @param toX x coordinate of which chessman's destination

     * @param toY y coordinate of which chessman's destination

     * @param newValue the new value

     */

    final static void setValue(int fromX, int fromY, int toX, int toY, int newValue) {

        holds[fromX][fromY][toX][toY] = newValue;

    }

}







/*

 * @(#)TranspositionTable.java

 * Author: 88250 <DL88250@gmail.com>, http://blog.csdn.net/DL88250

 * Created on Jun 1, 2008, 11:04:57 AM

 * 

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation; either version 3 of the License, or

 * (at your option) any later version.

 * 

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU Library General Public License for more details.

 * 

 * You should have received a copy of the GNU General Public License

 * along with this program; if not, write to the Free Software

 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

 */

package cn.edu.ynu.sei.chinesechess.infrastructure.search;



import java.util.Random;



/**

 * A <em>Transpositon Table</em> maintains a mass of node had evaluated.

 * In the table, we use <code>HashTable</code> to store each game tree node.

 * @author 88250 <DL88250@gmail.com>, http://blog.csdn.net/DL88250

 * @version 1.0.0.5, Jun 7, 2008

 */

final public class TranspositionTable {

// XXX currently, using 32-bits hash code

    /**

     * transposition table's size

     */

    final static int SIZE = 1024 * 32 * 8;

    /**

     * holds the chessboard condition<br>

     * <ul>

     * <li>15: 14 kinds of chessman, from 1 to 14</li>

     * </li>9, 10: 9 * 10 matrics form chessboard

     * </ul>

     * @see cn.edu.ynu.sei.chinesechess.infrastructure.common.Constants

     * @see cn.edu.ynu.sei.chinesechess.infrastructure.common.Situation#chessboard

     */

    static int[][][] hashCodes = new int[15][9][10];

    /**

     * the holds, [0, 1] for min value and max value

     */

    static HashNode[][] items = new HashNode[2][SIZE];

    /**

     * a 32-bits integer, acts for current hash code

     */

    static int curHashCode;

    /**

     * Transposition table hit count

     */

    public static int hashHitCount = 0;

    /**

     * singleton

     */

    private static TranspositionTable instance = new TranspositionTable();



    /**

     * Gets the single instance.

     * @return transposition table single instance

     */

    public static TranspositionTable getInstance() {

        if (instance == null) {

            instance = new TranspositionTable();

        }



        return instance;

    }



    /**

     * Initializes the hash code of the specified chessboard situation.

     * @param chessboard the specified chessboard situation

     */

    final static void initHashCode(int[][] chessboard) {

        curHashCode = calcCurHashCode(chessboard);

    }



    /**

     * Private default constructor.

     */

    private TranspositionTable() {

        Random random = new Random();

        for (int i = 0; i < 15; i++) {

            for (int j = 0; j < 9; j++) {

                for (int k = 0; k < 10; k++) {

                    hashCodes[i][j][k] = Math.abs(random.nextInt());

                }

            }

        }



        for (int i = 0; i < 2; i++) {

            for (int j = 0; j < SIZE; j++) {

                items[i][j] = new HashNode();

            }

        }

    }



    /**

     * Calculates the hash code for the specified chessboard situation.

     * @param chessboard the specified chessboar situation

     * @return 32-bits hash code

     */

    final public static int calcCurHashCode(int[][] chessboard) {

        int ret = 0;

        for (int i = 0; i < 9; i++) {

            for (int j = 0; j < 10; j++) {

                ret ^= hashCodes[chessboard[i][j]][i][j];

            }

        }



        return ret;

    }



    /**

     * Save a chessboard situation into transposition table.

     * @param type type of this hash item 

     * @param depth depth depth of search

     * @param value value of this hash value

     */

    final public static void save(NodeType type, int depth, int value) {

        // depth % 2: 0 for max, 1 for min

        HashNode item = items[depth % 2][curHashCode % SIZE];

        item.depth = depth;

        item.hashCode = curHashCode;

        item.type = type;

        item.value = value;

    }



    /**

     * Lookup a chessboard situation in transposition table.

     * @param depth depth of search

     * @param alpha min value to max value, the "floor"

     * @param beta  max value to min value, the "ceiling"

     * @return if find the result, returns value, otherwise,

     * returns <code>88250</code>

     */

    final public static int lookup(int depth, int alpha, int beta) {

        // depth % 2: 0 for max, 1 for min

        HashNode item = items[depth % 2][curHashCode % SIZE];



        if (item.depth == depth && item.hashCode == curHashCode) {

            hashHitCount++;

            switch (item.type) {

                case exact:

                    return item.value;

                case lowerBound:

                    if (item.value >= beta) {

                        return item.value;

                    } else {

                        break;

                    }

                case upperBound:

                    if (item.value <= alpha) {

                        return item.value;

                    } else {

                        break;

                    }

            }

        }



        // doesn't hit the target

        return 88250;

    }



    /**

     * Recovery the hash value of a motion had done.

     * @param fromX x coordinate of which chessman do this move

     * @param fromY y coordinate of which chessman do this move

     * @param toX x coordinate of which chessman's destination

     * @param toY y coordinate of which chessman's destination

     * @param chessmanId the target position's chessman 

     * @param chessboard current chessboard situation

     */

    final public static void unMoveHash(int fromX, int fromY, int toX, int toY,

                                        int chessmanId, int[][] chessboard) {

        int toId = chessboard[toX][toY];

        // retrieves the random number before the motion done

        curHashCode ^= hashCodes[toId][fromX][fromY];

        // removes chessman which position is toId

        curHashCode ^= hashCodes[toId][toX][toY];

        if (chessmanId != 0) {

            // recovery hash value chessman be eaten

            curHashCode ^= hashCodes[chessmanId][toX][toY];

        }

    }



    /**

     * Generates the hash value of a motion on the current situation.

     * @param fromX x coordinate of which chessman do this move

     * @param fromY y coordinate of which chessman do this move

     * @param toX x coordinate of which chessman's destination

     * @param toY y coordinate of which chessman's destination

     * @param chessboard current chessboard situation

     */

    final public static void moveHash(int fromX, int fromY, int toX, int toY,

                                      int[][] chessboard) {

        int fromId, toId;

        fromId = chessboard[fromX][fromY];

        toId = chessboard[toX][toY];

        // removes chessman which position is fromId

        curHashCode ^= hashCodes[fromId][fromX][fromY];

        if (toId != 0) {

            // if toId position has a chessman, removes it

            curHashCode ^= hashCodes[toId][toX][toY];

        }

        // retrieves the random number at toId

        curHashCode ^= hashCodes[fromId][toX][toY];

    }



    /**

     * Hash item type description.

     */

    enum NodeType {



        /**

         * the hash item's value had evaluated

         */

        exact,

        /**

         * the hash item's value is low bound

         */

        lowerBound,

        /**

         * the hash item's value is upper bound

         */

        upperBound,

        /**

         * the hash item's value is unknown

         */

        unknown

    };



    /**

     * Hash item description.

     */

    final class HashNode {



        /**

         * 32-bits hash code

         */

        int hashCode;

        /**

         * item's type

         */

        NodeType type = NodeType.unknown;

        /**

         * search depth

         */

        int depth;

        /**

         * item's value

         */

        int value;

    }



}

可以把代码贴到带Javadoc查看的IDE里看一下,那样比较清晰 : )

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/2088795.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-07-22
下一篇 2022-07-22

发表评论

登录后才能评论

评论列表(0条)

保存