我就废话不多说了,大家还是直接看代码吧!
# encoding=utf-8 import numpy as np import pandas as pd # 长宽格式的转换 # 1 data = pd.read_csv('d:data/macrodata.csv') print 'data:=n', data print 'data.to_records():=n', data.to_records() print 'data.year:=n', data.year print 'data.quarter:=n', data.quarter periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date') print 'periods:=n', periods data = pd.Dataframe(data.to_records(), columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'), index=periods.to_timestamp('D', 'end')) print 'data:=n', data ldata = data.stack().reset_index().rename(columns={0: 'value'}) # print 'ldata:=n', ldata print 'ldata.get('realgdp'):=n', ldata.get('realgdp') print 'ldata.get('unemp'):=n', ldata.get('unemp') wdata = ldata.pivot('date', 'item', 'value') print 'ldata:=n', ldata print 'wdata:=n', wdata # 2 print 'ldata[:10]:=n', ldata[:10] pivoted = ldata.pivot('date', 'item', 'value') print 'pivoted:=n', pivoted print 'pivoted.head():=n', pivoted.head() print 'ldata:=n', ldata ldata['value2'] = np.random.randn(len(ldata)) print 'ldata['value2']:=n', ldata['value2'] print 'ldata[:10]:=n', ldata[:10] pivoted = ldata.pivot('date', 'item') print 'pivoted:=n', pivoted print pivoted[:5] print 'pivoted['value'][:5]:=n', pivoted['value'][:5] print 'ldata:=n', ldata unstacked = ldata.set_index(['date', 'item']).unstack('item') print 'unstacked:=n', unstacked print 'test'
补充知识:python使用_pandas_用stack和unstack进行行列重塑(key-value变宽表)
数据结构的重塑(reshape)
与数据库交互时常遇到堆叠格式(key-value)和宽表形式(dataframe)的转换,如:
堆叠格式:
宽表形式dataframe:
下面是相互转换的示例代码:
import pandas as pd import numpy as np # 常用的表格形式的数据结构 df = pd.Dataframe(np.arange(6).reshape((2,3)), index=['id1','id2'], columns=['attr1','attr2','attr3']) print(df) out: attr1 attr2 attr3 id1 0 1 2 id2 3 4 5 # 宽表形式(dataframe)转变为堆叠形式(key-value)形式 # 数据库中常以该形式存储 df_key_value = df.stack().reset_index() df_key_value.columns = ['id', 'attr', 'value'] print(df_key_value) out: id attr value 0 id1 attr1 0 1 id1 attr2 1 2 id1 attr3 2 3 id2 attr1 3 4 id2 attr2 4 5 id2 attr3 5 # 堆叠转换为宽表形式 # 用set_index创建层次化索引,在用unstack重塑 # unstack中作为旋转轴的变量(如attr),其值会作为列变量展开 df_key_value.set_index(['id','attr']).unstack('attr') out: value attr attr1 attr2 attr3 id id1 0 1 2 id2 3 4 5 # 多层索引转化为宽表 df_long = df_key_value.set_index(['id','attr']).unstack('attr')['value'].reset_index() df_long out: attr id attr1 attr2 attr3 0 id1 0 1 2 1 id2 3 4 5 # 堆叠转换为宽表的快捷键---pivot df_key_value.pivot('id','attr','value') out: attr attr1 attr2 attr3 id id1 0 1 2 id2 3 4 5
以上这篇python 数据分析实现长宽格式的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持考高分网。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)