Python Sympy计算梯度、散度和旋度的实例

Python Sympy计算梯度、散度和旋度的实例,第1张

Python Sympy计算梯度、散度和旋度的实例

sympy有个vector 模块,里面提供了求解标量场、向量场的梯度、散度、旋度等计算,官方参考连接:

http://docs.sympy.org/latest/modules/vector/index.html

sympy中计算梯度、散度和旋度主要有两种方式:

一个是使用∇∇算子,sympy提供了类Del(),该类的方法有:cross、dot和gradient,cross就是叉乘,计算旋度的,dot是点乘,用于计算散度,gradient自然就是计算梯度的。

另一种方法就是直接调用相关的API:curl、divergence和gradient,这些函数都在模块sympy.vector 下面。

使用sympy计算梯度、散度和旋度之前,首先要确定坐标系,sympy.vector模块里提供了构建坐标系的类,常见的是笛卡尔坐标系, CoordSys3D,根据下面的例子可以了解到相应应用。

(1)计算梯度

## 1 gradient

C = CoordSys3D('C')
delop = Del() # nabla算子

# 标量场 f = x**2*y-xy
f = C.x**2*C.y - C.x*C.y

res = delop.gradient(f, doit=True) # 使用nabla算子
# res = delop(f).doit()
res = gradient(f) # 直接使用gradient

print(res) # (2*C.x*C.y - C.y)*C.i + (C.x**2 - C.x)*C.j

(2)计算散度

## divergence

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.dot(f, doit=True)

# res = divergence(f)

print(res) # 2*C.x*C.y - C.x,即2xy-x,向量场的散度是标量

(3)计算旋度

## curl

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.cross(f, doit=True)

# res = curl(f)

print(res) # (-C.x**2 - C.y)*C.k,即(-x**2-y)*k,向量场的旋度是向量

以上这篇Python Sympy计算梯度、散度和旋度的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持考高分网。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3246873.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-04
下一篇 2022-10-04

发表评论

登录后才能评论

评论列表(0条)

保存