pymongo中聚合查询的使用方法

pymongo中聚合查询的使用方法,第1张

pymongo中聚合查询的使用方法

前言

在使用mongo数据库时,简单的查询基本上可以满足大多数的业务场景,但是试想一下,如果要统计某一荐在指定的数据中出现了多少次该怎么查询呢?笨的方法是使用find 将数据查询出来,再使用count() 方法进行数据统计,这个场景还好,但是如果要求其中某个字段的和呢?是不是就非得遍历出相应的数据然后再进行求和运算呢?

在mysql中我们经常会用到count、group by 等查询,在mongodb中我们也可以使用聚合查询。

假设有这样的一组数据


价格

里面记录了每种水果的价格,现在我要统计一下,各种水果在这张表中出现的次数,如果不用聚合查询的话,思路应该是这样,先把表中所有的数据都取出来,然后初始化一个字典,然后再遍历每一行的数据,获取它的fName ,然后再更新字典中的计数,这种方法的时间复杂度是O(N)的,如果数据量很大的话不是很好,下面来看一下使用聚合是怎么查询的。

聚合查询使用的是aggregate函数,它的参数是 pipeline 管道,管道的概念是用于将当前命令的输出结果作为下一个命令的参数,管道是有顺序的,比如通过第一个管道 *** 作以后没有符合的数据那么之后的管道 *** 作也就不会有输入,所以一定得要注意管道 *** 作的顺序。由于对于上述问题,我们要的是所的数据统计,所以这里就不需要$match了

from pymongo import MongoClient

client = MongoClient(host=['%s:%s'%(mongoDBhost,mongoDBport)])
G_mongo = client[mongoDBname]['FruitPrice']

pipeline = [
 {'$group': {'_id': "$fName", 'count': {'$sum': 1}}},
 ]
for i in G_mongo['test'].aggregate(pipeline):
 print i

数据大家可以自已构造,这里主要是看aggregate的用法。
得到的结果是

{u'count': 8, u'_id': u'banana'}
{u'count': 9, u'_id': u'pear'}
{u'count': 14, u'_id': u'apple'}

可以看到,一步 *** 作就可以得到相应的统计了。

如果想要获取价格在50以上的各种统计呢?

这时有pipeline应该再$group 之前加上$match *** 作

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName", 'count': {'$sum': 1}}},
 ]

一定要注意顺序

$match里的条件其实就和使用find函数里是一样的。

下面重点来说说$group *** 作,group意为分组,指数据根据哪个字段进行分组,上面使用的{'$group': {'_id': "$fName", 'count': {'$sum': 1},_id为所要分的组,这里是以fName字段分的,后面的'count': {'$sum': 1},这里的$sum就是求和的意思,后面的值是1,也就是说每出现一次就加1,这样就能达到计数的目的了,如果要计算价格 price 的和,那么这里就应该写成这样

{'$group': {'_id': "$fName", 'count': {'$sum': '$price'}}}

注意这里的字段要有$ 的,如果我想要求价格的平均值呢?也就是先要求出价格的总数,再除以商品的个数,但是这里有一个$avg *** 作

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName", 'avg': {'$avg': '$price'}}},
 ]

得到的结果

{u'_id': u'banana', u'avg': 66.200000000000003}
{u'_id': u'pear', u'avg': 77.0}
{u'_id': u'apple', u'avg': 74.0}

类似于$ave的 *** 作还有很多,比较常用的是$min(求最小值),$max(求最大值)

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName",
  'count':{'$sum':1},
  'priceAll':{'$sum':'$price'},
  'avg': {'$avg': '$price'},
  'min': {'$min':'$price'},
  'max': {'$max':'$price'}
  }
 },
 ]
for i in G_mongo['test'].aggregate(pipeline):
 print i

所有支持的 *** 作可以参考官方文档:group 支持的 *** 作

以哪个字段进行分组时必须使用_id。

接下来看一下多键分组。

以上在使用group 进行分组查询的时候,用到的_id都是单一字段,比如我的数据库中有如下数据


带用户的数据

带有一个user 字段了,那如果我要根据user和fName进行分组该如何 *** 作呢?
这里可以传一个字典进去

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': {'fName':'$fName','user':'$user'},
  'count':{'$sum':1},
  'priceAll':{'$sum':'$price'},
  'avg': {'$avg': '$price'},
  'min': {'$min':'$price'},
  'max': {'$max':'$price'}
  }
 },
 ]
for i in G_mongo['test2'].aggregate(pipeline):
 print i

得到的结果如下:

{u'count': 1, u'avg': 93.0, u'min': 93, u'max': 93, u'_id': {u'user': u'fanjieying', u'fName': u'pear'}, u'priceAll': 93}
{u'count': 2, u'avg': 88.0, u'min': 87, u'max': 89, u'_id': {u'user': u'yangyanxing', u'fName': u'banana'}, u'priceAll': 176}
{u'count': 2, u'avg': 70.0, u'min': 69, u'max': 71, u'_id': {u'user': u'yangyanxing', u'fName': u'pear'}, u'priceAll': 140}
{u'count': 2, u'avg': 65.5, u'min': 58, u'max': 73, u'_id': {u'user': u'fanjieying', u'fName': u'banana'}, u'priceAll': 131}
{u'count': 3, u'avg': 92.333333333333329, u'min': 86, u'max': 97, u'_id': {u'user': u'fantuan', u'fName': u'banana'}, u'priceAll': 277}
{u'count': 2, u'avg': 78.5, u'min': 73, u'max': 84, u'_id': {u'user': u'yangyanxing', u'fName': u'apple'}, u'priceAll': 157}
{u'count': 3, u'avg': 56.666666666666664, u'min': 51, u'max': 60, u'_id': {u'user': u'fantuan', u'fName': u'pear'}, u'priceAll': 170}
{u'count': 2, u'avg': 81.5, u'min': 73, u'max': 90, u'_id': {u'user': u'fanjieying', u'fName': u'apple'}, u'priceAll': 163}
{u'count': 2, u'avg': 69.5, u'min': 53, u'max': 86, u'_id': {u'user': u'fantuan', u'fName': u'apple'}, u'priceAll': 139}

这里的结果显示出每个用户买了哪个商品,一共花了多少钱,最大最小平均值等都可以一次性的展示了,如果要是使用for循环自已遍历的话这种时间复杂度相当高。

这里只是简单的说了下$group和$match 的用法,聚合查询支持很多种 *** 作(称为stages),可以通官方文档进行查看
pymongo 中pipeline中的stages

参考文章

pymongo 的 group by 方法

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对考高分网的支持。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3273328.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-05
下一篇 2022-10-05

发表评论

登录后才能评论

评论列表(0条)

保存