基于tensorflow加载部分层的方法

基于tensorflow加载部分层的方法,第1张

基于tensorflow加载部分层的方法

一般使用

saver.restore(sess, modeldir + "model.ckpt")

即可加载已经训练好的网络,可是有时候想值使用部分层的参数,这时候可以选择在加载网络之后重新初始化剩下的层

var_list = [weights['wd1'], weights['out'], biases['bd1'], biases['out'], global_step]
initfc = tf.variables_initializer(var_list, name='init')

比如我们想从新初始化var_list中的各个层,在restore之后,再初始化即可

sess.run(init)
saver.restore(sess, modeldir + "model.ckpt")
print sess.run(global_step)
#initialize several layer
sess.run(initfc)
print sess.run(global_step)

即可发现部分变量重新初始化了

以上这篇基于tensorflow加载部分层的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持考高分网。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3289674.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-05
下一篇 2022-10-05

发表评论

登录后才能评论

评论列表(0条)

保存