1、导入相关库函数
import torch from torch import nn from torch.nn import functional as F from torchsummary import summary from tensorboardX import SummaryWriter
2、Spatial Gating Unit模块设计
根据上图的Pseudo-code中的spatial_gating_uint(x)函数,以及文献中的公式(6),大致思路是:将输入x分块,分为Z1和Z2(对应于U,V),其中Z2经过线性映射,后输出U*V。公式如下:
class SpatialGatingUnit(nn.Module): # [-1,256,256] def __init__(self, d_ffn, seq_len): super().__init__() self.norm = nn.LayerNorm(d_ffn) # [-1,256,256]->[-1,256,512] self.spatial_proj = nn.Conv1d(seq_len, seq_len, kernel_size=1) # [-1,256,512]->[-1,256,512] nn.init.constant_(self.spatial_proj.bias, 1.0) # 偏差 def forward(self, x): # chunk(arr, size)接收两个参数,一个是原数组,一个是分块的大小size,默认值为1, # 原数组中的元素会按照size的大小从头开始分块,每一块组成一个新数组,如果最后元素个数不足size的大小,那么它们会组成一个快。 u, v = x.chunk(2, dim=-1) v = self.norm(v) v = self.spatial_proj(v) out = u * v return out
该模块的结构如下所示:
3、gMLPBlock模块搭建
即搭建下图结构:
class gMLPBlock(nn.Module): def __init__(self, d_model, d_ffn, seq_len): super().__init__() self.norm = nn.LayerNorm(d_model) self.channel_proj1 = nn.Linear(d_model, d_ffn * 2) # (256, d_ffn * 2=1024) [-1,256,1024] self.sgu = SpatialGatingUnit(d_ffn, seq_len) # self.channel_proj2 = nn.Linear(d_ffn, d_model) def forward(self, x): residual = x x = self.norm(x) # [-1,256,256] x = F.gelu(self.channel_proj1(x)) # GELU激活函数 [-1,256,256] x = self.sgu(x) # [-1,256,256] x = self.channel_proj2(x) out = x + residual return out
该模块的结构如下所示:
4、gMLP模块搭建(方便堆叠num_layers)
class gMLP(nn.Module): def __init__(self, d_model=256, d_ffn=512, seq_len=256, num_layers=6): super().__init__() self.model = nn.Sequential( *[gMLPBlock(d_model, d_ffn, seq_len) for _ in range(num_layers)] ) # [gMLPBlock(d_model=256, d_ffn=512, seq_len=256) for _ in range(num_layers)] def forward(self, x): return self.model(x)
5、总体结构gMLPForImageClassification
class gMLPForImageClassification(gMLP): def __init__( self, image_size=256, patch_size=16, in_channels=3, num_classes=1000, d_model=256, d_ffn=512, seq_len=256, num_layers=6, ): num_patches = check_sizes(image_size, patch_size) # num_patches=256 super().__init__(d_model, d_ffn, seq_len, num_layers) self.patcher = nn.Conv2d( in_channels, d_model, kernel_size=patch_size, stride=patch_size ) # [2, 3, 256, 256] -> [2, 256, 16, 16] self.classifier = nn.Linear(d_model, num_classes) def forward(self, x): # a = x.shape = [2,3,256,256] patches = self.patcher(x) batch_size, num_channels, _, _ = patches.shape # [2,256,16,16] patches = patches.permute(0, 2, 3, 1) # 将tensor的维度换位 [2,256,16,16]->[2,16,16,256] patches = patches.view(batch_size, -1, num_channels) # 转为(2,-1,256) 即为[2,256,256] # a = patches.shape embedding = self.model(patches) # a = embedding.shape = [2,256,256] embedding = embedding.mean(dim=1) out = self.classifier(embedding) return out
总体结构如下:
6、测试网络
# 测试gMLP if __name__ == '__main__': device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = gMLPForImageClassification(image_size=256,patch_size=16,in_channels=3,num_classes=1000,d_model=256,d_ffn=512,seq_len=256,num_layers=1,).to(device) summary(model, (3, 256, 256)) # [2,3,256,256] inputs = torch.Tensor(2, 3, 256, 256) inputs = inputs.to(device) print(inputs.shape) # 将model保存为graph with SummaryWriter(log_dir='logs', comment='model') as w: w.add_graph(model, (inputs,)) print("success")
以一个[2,3,256,256]大小的输入作为测试,得到,网络的架构图如上所示。
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 256, 16, 16] 196,864 LayerNorm-2 [-1, 256, 256] 512 Linear-3 [-1, 256, 1024] 263,168 LayerNorm-4 [-1, 256, 512] 1,024 Conv1d-5 [-1, 256, 512] 65,792 SpatialGatingUnit-6 [-1, 256, 512] 0 Linear-7 [-1, 256, 256] 131,328 gMLPBlock-8 [-1, 256, 256] 0 Linear-9 [-1, 1000] 257,000 ================================================================ Total params: 915,688 Trainable params: 915,688 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.75 Forward/backward pass size (MB): 7.01 Params size (MB): 3.49 Estimated Total Size (MB): 11.25 ----------------------------------------------------------------
网络的结构框图如下所示(一层gMLP):
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)