列表和numpy数组是不可以训练的,要转换成dataset才能用model.fit函数来训练
import numpy as np import tensorflow as tf
input_data = np.arange(16) input_data
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
dataset就是tensor组成的数组
dataset = tf.data.Dataset.from_tensor_slices( input_data # numpy数组或者list列表 ) # numpy数组转tf.Tensor数组(即:TensorSliceDataset) dataset
for data in dataset: print(data)
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor(5, shape=(), dtype=int32)
tf.Tensor(6, shape=(), dtype=int32)
tf.Tensor(7, shape=(), dtype=int32)
tf.Tensor(8, shape=(), dtype=int32)
tf.Tensor(9, shape=(), dtype=int32)
tf.Tensor(10, shape=(), dtype=int32)
tf.Tensor(11, shape=(), dtype=int32)
tf.Tensor(12, shape=(), dtype=int32)
tf.Tensor(13, shape=(), dtype=int32)
tf.Tensor(14, shape=(), dtype=int32)
tf.Tensor(15, shape=(), dtype=int32)
dataset = dataset.repeat(2) # 把dataset重复2次 dataset
for data in dataset: print(data)
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor(5, shape=(), dtype=int32)
tf.Tensor(6, shape=(), dtype=int32)
tf.Tensor(7, shape=(), dtype=int32)
tf.Tensor(8, shape=(), dtype=int32)
tf.Tensor(9, shape=(), dtype=int32)
tf.Tensor(10, shape=(), dtype=int32)
tf.Tensor(11, shape=(), dtype=int32)
tf.Tensor(12, shape=(), dtype=int32)
tf.Tensor(13, shape=(), dtype=int32)
tf.Tensor(14, shape=(), dtype=int32)
tf.Tensor(15, shape=(), dtype=int32)
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor(5, shape=(), dtype=int32)
tf.Tensor(6, shape=(), dtype=int32)
tf.Tensor(7, shape=(), dtype=int32)
tf.Tensor(8, shape=(), dtype=int32)
tf.Tensor(9, shape=(), dtype=int32)
tf.Tensor(10, shape=(), dtype=int32)
tf.Tensor(11, shape=(), dtype=int32)
tf.Tensor(12, shape=(), dtype=int32)
tf.Tensor(13, shape=(), dtype=int32)
tf.Tensor(14, shape=(), dtype=int32)
tf.Tensor(15, shape=(), dtype=int32)
dataset = dataset.batch(4) # 把4个tensor发在一起组成一个tensor dataset
for data in dataset: print(data)
tf.Tensor([0 1 2 3], shape=(4,), dtype=int32)
tf.Tensor([4 5 6 7], shape=(4,), dtype=int32)
tf.Tensor([ 8 9 10 11], shape=(4,), dtype=int32)
tf.Tensor([12 13 14 15], shape=(4,), dtype=int32)
tf.Tensor([0 1 2 3], shape=(4,), dtype=int32)
tf.Tensor([4 5 6 7], shape=(4,), dtype=int32)
tf.Tensor([ 8 9 10 11], shape=(4,), dtype=int32)
tf.Tensor([12 13 14 15], shape=(4,), dtype=int32)
dataset = dataset.shuffle(buffer_size=10) # 把dataset打乱顺序 dataset
for data in dataset: print(data)
tf.Tensor([12 13 14 15], shape=(4,), dtype=int32)
tf.Tensor([0 1 2 3], shape=(4,), dtype=int32)
tf.Tensor([ 8 9 10 11], shape=(4,), dtype=int32)
tf.Tensor([4 5 6 7], shape=(4,), dtype=int32)
tf.Tensor([0 1 2 3], shape=(4,), dtype=int32)
tf.Tensor([12 13 14 15], shape=(4,), dtype=int32)
tf.Tensor([ 8 9 10 11], shape=(4,), dtype=int32)
tf.Tensor([4 5 6 7], shape=(4,), dtype=int32)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)