手眼标定整体流程及原理参考b站视频手眼标定-原理与实战,讲的十分详细。
这里完成的是eye-in-hand类型的手眼标定。
import cv2 import numpy as np import glob from math import * import pandas as pd import os K=np.array([[4283.95148301687,-0.687179973528103,2070.79900757240], [0,4283.71915784510,1514.87274457919], [0,0,1]],dtype=np.float64)#大恒相机内参 chess_board_x_num=11#棋盘格x方向格子数 chess_board_y_num=8#棋盘格y方向格子数 chess_board_len=10#单位棋盘格长度,mm #用于根据欧拉角计算旋转矩阵 def myRPY2R_robot(x, y, z): Rx = np.array([[1, 0, 0], [0, cos(x), -sin(x)], [0, sin(x), cos(x)]]) Ry = np.array([[cos(y), 0, sin(y)], [0, 1, 0], [-sin(y), 0, cos(y)]]) Rz = np.array([[cos(z), -sin(z), 0], [sin(z), cos(z), 0], [0, 0, 1]]) R = Rz@Ry@Rx return R #用于根据位姿计算变换矩阵 def pose_robot(x, y, z, Tx, Ty, Tz): thetaX = x / 180 * pi thetaY = y / 180 * pi thetaZ = z / 180 * pi R = myRPY2R_robot(thetaX, thetaY, thetaZ) t = np.array([[Tx], [Ty], [Tz]]) RT1 = np.column_stack([R, t]) # 列合并 RT1 = np.row_stack((RT1, np.array([0,0,0,1]))) # RT1=np.linalg.inv(RT1) return RT1 #用来从棋盘格图片得到相机外参 def get_RT_from_chessboard(img_path,chess_board_x_num,chess_board_y_num,K,chess_board_len): ''' :param img_path: 读取图片路径 :param chess_board_x_num: 棋盘格x方向格子数 :param chess_board_y_num: 棋盘格y方向格子数 :param K: 相机内参 :param chess_board_len: 单位棋盘格长度,mm :return: 相机外参 ''' img=cv2.imread(img_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) size = gray.shape[::-1] ret, corners = cv2.findChessboardCorners(gray, (chess_board_x_num, chess_board_y_num), None) # print(corners) corner_points=np.zeros((2,corners.shape[0]),dtype=np.float64) for i in range(corners.shape[0]): corner_points[:,i]=corners[i,0,:] # print(corner_points) object_points=np.zeros((3,chess_board_x_num*chess_board_y_num),dtype=np.float64) flag=0 for i in range(chess_board_y_num): for j in range(chess_board_x_num): object_points[:2,flag]=np.array([(11-j-1)*chess_board_len,(8-i-1)*chess_board_len]) flag+=1 # print(object_points) retval,rvec,tvec = cv2.solvePnP(object_points.T,corner_points.T, K, distCoeffs=None) # print(rvec.reshape((1,3))) # RT=np.column_stack((rvec,tvec)) RT=np.column_stack(((cv2.Rodrigues(rvec))[0],tvec)) RT = np.row_stack((RT, np.array([0, 0, 0, 1]))) # RT=pose(rvec[0,0],rvec[1,0],rvec[2,0],tvec[0,0],tvec[1,0],tvec[2,0]) # print(RT) # print(retval, rvec, tvec) # print(RT) # print('') return RT folder = r"calib"#棋盘格图片存放文件夹 # files = os.listdir(folder) # file_num=len(files) # RT_all=np.zeros((4,4,file_num)) # print(get_RT_from_chessboard('calib/2.bmp', chess_board_x_num, chess_board_y_num, K, chess_board_len)) ''' 这个地方很奇怪的特点,有些棋盘格点检测得出来,有些检测不了,可以通过函数get_RT_from_chessboard的运行时间来判断 ''' good_picture=[1,3,5,6,7,8,10,11,12,13,14,15]#存放可以检测出棋盘格角点的图片 # good_picture=[1,3,10,11,12] file_num=len(good_picture) #计算board to cam 变换矩阵 R_all_chess_to_cam_1=[] T_all_chess_to_cam_1=[] for i in good_picture: # print(i) image_path=folder+'/'+str(i)+'.bmp' RT=get_RT_from_chessboard(image_path, chess_board_x_num, chess_board_y_num, K, chess_board_len) # RT=np.linalg.inv(RT) R_all_chess_to_cam_1.append(RT[:3,:3]) T_all_chess_to_cam_1.append(RT[:3, 3].reshape((3,1))) # print(T_all_chess_to_cam.shape) #计算end to base变换矩阵 file_address='calib/机器人基坐标位姿.xlsx'#从记录文件读取机器人六个位姿 sheet_1 = pd.read_excel(file_address) R_all_end_to_base_1=[] T_all_end_to_base_1=[] # print(sheet_1.iloc[0]['ax']) for i in good_picture: # print(sheet_1.iloc[i-1]['ax'],sheet_1.iloc[i-1]['ay'],sheet_1.iloc[i-1]['az'],sheet_1.iloc[i-1]['dx'], # sheet_1.iloc[i-1]['dy'],sheet_1.iloc[i-1]['dz']) RT=pose_robot(sheet_1.iloc[i-1]['ax'],sheet_1.iloc[i-1]['ay'],sheet_1.iloc[i-1]['az'],sheet_1.iloc[i-1]['dx'], sheet_1.iloc[i-1]['dy'],sheet_1.iloc[i-1]['dz']) # RT=np.column_stack(((cv2.Rodrigues(np.array([[sheet_1.iloc[i-1]['ax']],[sheet_1.iloc[i-1]['ay']],[sheet_1.iloc[i-1]['az']]])))[0], # np.array([[sheet_1.iloc[i-1]['dx']], # [sheet_1.iloc[i-1]['dy']],[sheet_1.iloc[i-1]['dz']]]))) # RT = np.row_stack((RT, np.array([0, 0, 0, 1]))) # RT = np.linalg.inv(RT) R_all_end_to_base_1.append(RT[:3, :3]) T_all_end_to_base_1.append(RT[:3, 3].reshape((3, 1))) # print(R_all_end_to_base_1) R,T=cv2.calibrateHandEye(R_all_end_to_base_1,T_all_end_to_base_1,R_all_chess_to_cam_1,T_all_chess_to_cam_1)#手眼标定 RT=np.column_stack((R,T)) RT = np.row_stack((RT, np.array([0, 0, 0, 1])))#即为cam to end变换矩阵 print('相机相对于末端的变换矩阵为:') print(RT) #结果验证,原则上来说,每次结果相差较小 for i in range(len(good_picture)): RT_end_to_base=np.column_stack((R_all_end_to_base_1[i],T_all_end_to_base_1[i])) RT_end_to_base=np.row_stack((RT_end_to_base,np.array([0,0,0,1]))) # print(RT_end_to_base) RT_chess_to_cam=np.column_stack((R_all_chess_to_cam_1[i],T_all_chess_to_cam_1[i])) RT_chess_to_cam=np.row_stack((RT_chess_to_cam,np.array([0,0,0,1]))) # print(RT_chess_to_cam) RT_cam_to_end=np.column_stack((R,T)) RT_cam_to_end=np.row_stack((RT_cam_to_end,np.array([0,0,0,1]))) # print(RT_cam_to_end) RT_chess_to_base=RT_end_to_base@RT_cam_to_end@RT_chess_to_cam#即为固定的棋盘格相对于机器人基坐标系位姿 RT_chess_to_base=np.linalg.inv(RT_chess_to_base) print('第',i,'次') print(RT_chess_to_base[:3,:]) print('')
opencv-python参考文档里面关于这一块资料较少,函数的输入条件也试了好半天才试明白,归根结底还是要懂这个eye-in-hand的原理。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)