- 一、什么是 CAS
- 二、CAS应用
- 三、CAS源码分析
- 三、CAS缺陷
- 四、ABA问题及其解决方案
- 4.1 什么是ABA问题
- 4.2 ABA问题的解决方案
CAS(Compare And Swap,比较并交换),通常指的是这样一种原子 *** 作:针对一个变量,首先比较它的内存值与某个期望值是否相同,如果相同,就给它赋一个新值。
CAS 的逻辑用伪代码描述如下:
if (value == expectedValue) { value = newValue; }
以上伪代码描述了一个由比较和赋值两阶段组成的复合 *** 作,CAS 可以看作是它们合并后的整体——一个不可分割的原子 *** 作,并且其原子性是直接在硬件层面得到保障的(指令:cmpxchg)。
CAS可以看做是乐观锁(对比数据库的悲观、乐观锁)的一种实现方式,Java原子类中的递增 *** 作就通过CAS自旋实现的。
CAS是一种无锁算法,在不使用锁(没有线程被阻塞)的情况下实现多线程之间的变量同步。
二、CAS应用在 Java 中,CAS *** 作是由 Unsafe 类提供支持的,该类定义了三种针对不同类型变量的 CAS *** 作,如图:
它们都是 native 方法,由 Java 虚拟机提供具体实现,这意味着不同的 Java 虚拟机对它们的实现可能会略有不同。
以 compareAndSwapInt 为例,Unsafe 的 compareAndSwapInt 方法接收 4 个参数,分别是:对象实例、内存偏移量、字段期望值、字段新值。该方法会针对指定对象实例中的相应偏移量的字段执行 CAS *** 作。
public class CASTest { public static void main(String[] args) { Entity entity = new Entity(); Unsafe unsafe = UnsafeFactory.getUnsafe(); long offset = UnsafeFactory.getFieldOffset(unsafe, Entity.class, "x"); boolean successful; // 4个参数分别是:对象实例、字段的内存偏移量、字段期望值、字段新值 successful = unsafe.compareAndSwapInt(entity, offset, 0, 3); System.out.println(successful + "t" + entity.x); successful = unsafe.compareAndSwapInt(entity, offset, 3, 5); System.out.println(successful + "t" + entity.x); successful = unsafe.compareAndSwapInt(entity, offset, 3, 8); System.out.println(successful + "t" + entity.x); } } public class UnsafeFactory { public static Unsafe getUnsafe() { try { Field field = Unsafe.class.getDeclaredField("theUnsafe"); field.setAccessible(true); return (Unsafe) field.get(null); } catch (Exception e) { e.printStackTrace(); } return null; } public static long getFieldOffset(Unsafe unsafe, Class clazz, String fieldName) { try { return unsafe.objectFieldOffset(clazz.getDeclaredField(fieldName)); } catch (NoSuchFieldException e) { throw new Error(e); } } }
测试:针对 entity.x 的 3 次 CAS *** 作,分别试图将它从 0 改成 3、从 3 改成 5、从 3 改成 8。执行结果如下:
Hotspot 虚拟机对compareAndSwapInt 方法的实现如下:
// unsafe.cpp UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) UnsafeWrapper("Unsafe_CompareAndSwapInt"); oop p = JNIHandles::resolve(obj); // 根据偏移量,计算value的地址 jint* addr = (jint *) index_oop_from_field_offset_long(p, offset); // Atomic::cmpxchg(x, addr, e) cas逻辑 x:要交换的值 e:要比较的值 //cas成功,返回期望值e,等于e,此方法返回true //cas失败,返回内存中的value值,不等于e,此方法返回false return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
核心逻辑在Atomic::cmpxchg方法中,这个根据不同 *** 作系统和不同CPU会有不同的实现。这里我们以linux_64x的为例,查看Atomic::cmpxchg在linux X86架构中的实现:
// atomic_linux_x86.inline.hpp inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) { //判断当前执行环境是否为多处理器环境 int mp = os::is_MP(); //LOCK_IF_MP(%4) 在多处理器环境下,为 cmpxchgl 指令添加 lock 前缀,以达到内存屏障的效果 //cmpxchgl 指令是包含在 x86 架构及 IA-64 架构中的一个原子条件指令, //它会首先比较 dest 指针指向的内存值是否和 compare_value 的值相等, //如果相等,则双向交换 dest 与 exchange_value,否则就单方面地将 dest 指向的内存值交给exchange_value。 //这条指令完成了整个 CAS *** 作,因此它也被称为 CAS 指令。 __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)" : "=a" (exchange_value) : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp) : "cc", "memory"); return exchange_value;
cmpxchgl的详细执行过程:
首先,输入是"r" (exchange_value), “a” (compare_value), “r” (dest), “r” (mp),表示compare_value存入eax寄存器,而exchange_value、dest、mp的值存入任意的通用寄存器。嵌入式汇编规定把输出和输入寄存器按统一顺序编号,顺序是从输出寄存器序列从左到右从上到下以“%0”开始,分别记为%0、%1···%9。也就是说,输出的eax是%0,输入的exchange_value、compare_value、dest、mp分别是%1、%2、%3、%4。
因此,cmpxchg %1,(%3)实际上表示cmpxchg exchange_value,(dest)
需要注意的是cmpxchg有个隐含 *** 作数eax,其实际过程是先比较eax的值(也就是compare_value)和dest地址所存的值是否相等,
输出是"=a" (exchange_value),表示把eax中存的值写入exchange_value变量中。
Atomic::cmpxchg这个函数最终返回值是exchange_value,也就是说,如果cmpxchgl执行时compare_value和dest指针指向内存值相等则会使得dest指针指向内存值变成exchange_value,最终eax存的compare_value赋值给了exchange_value变量,即函数最终返回的值是原先的compare_value。此时Unsafe_CompareAndSwapInt的返回值(jint)(Atomic::cmpxchg(x, addr, e)) == e就是true,表明CAS成功。如果cmpxchgl执行时compare_value和(dest)不等则会把当前dest指针指向内存的值写入eax,最终输出时赋值给exchange_value变量作为返回值,导致(jint)(Atomic::cmpxchg(x, addr, e)) == e得到false,表明CAS失败。
现代处理器指令集架构基本上都会提供 CAS 指令,例如 x86 和 IA-64 架构中的 cmpxchgl 指令和 comxchgq 指令,sparc 架构中的 cas 指令和 casx 指令。
不管是 Hotspot 中的 Atomic::cmpxchg 方法,还是 Java 中的 compareAndSwapInt 方法,它们本质上都是对相应平台的 CAS 指令的一层简单封装。CAS 指令作为一种硬件原语,有着天然的原子性,这也正是 CAS 的价值所在。
总结: CAS底层是依赖两个指令实现的:Lock前缀指令(保证可见性和有序性,在Linux X86架构中代替内存屏障,是volatile的实现。) + cmpxchg指令(保证比较到交换这个动作是原子性的。)
三、CAS缺陷CAS 虽然高效地解决了原子 *** 作,但是还是存在一些缺陷的,主要表现在三个方面:
- 自旋 CAS 长时间地不成功,则会给 CPU 带来非常大的开销
- 只能保证一个共享变量原子 *** 作
- ABA 问题
CAS算法实现一个重要前提需要取出内存中某时刻的数据,而在下时刻比较并替换,那么在这个时间差类会导致数据的变化。
4.1 什么是ABA问题当有多个线程对一个原子类进行 *** 作的时候,某个线程在短时间内将原子类的值A修改为B,又马上将其修改为A,此时其他线程不感知,还是会修改成功。
测试:
@Slf4j public class ABATest { public static void main(String[] args) { AtomicInteger atomicInteger = new AtomicInteger(1); new Thread(()->{ int value = atomicInteger.get(); log.debug("Thread1 read value: " + value); // 阻塞1s LockSupport.parkNanos(1000000000L); // Thread1通过CAS修改value值为3 if (atomicInteger.compareAndSet(value, 3)) { log.debug("Thread1 update from " + value + " to 3"); } else { log.debug("Thread1 update fail!"); } },"Thread1").start(); new Thread(()->{ int value = atomicInteger.get(); log.debug("Thread2 read value: " + value); // Thread2通过CAS修改value值为2 if (atomicInteger.compareAndSet(value, 2)) { log.debug("Thread2 update from " + value + " to 2"); // do something value = atomicInteger.get(); log.debug("Thread2 read value: " + value); // Thread2通过CAS修改value值为1 if (atomicInteger.compareAndSet(value, 1)) { log.debug("Thread2 update from " + value + " to 1"); } } },"Thread2").start(); } }
Thread1不清楚Thread2对value的 *** 作,误以为value=1没有修改过。
4.2 ABA问题的解决方案数据库有个锁称为乐观锁,是一种基于数据版本实现数据同步的机制,每次修改一次数据,版本就会进行累加。
同样,Java也提供了相应的原子引用类AtomicStampedReference
reference即我们实际存储的变量,stamp是版本,每次修改可以通过+1保证版本唯一性。这样就可以保证每次修改后的版本也会往上递增。
@Slf4j public class AtomicStampedReferenceTest { public static void main(String[] args) { // 定义AtomicStampedReference Pair.reference值为1, Pair.stamp为1 AtomicStampedReference atomicStampedReference = new AtomicStampedReference(1,1); new Thread(()->{ int[] stampHolder = new int[1]; int value = (int) atomicStampedReference.get(stampHolder); int stamp = stampHolder[0]; log.debug("Thread1 read value: " + value + ", stamp: " + stamp); // 阻塞1s LockSupport.parkNanos(1000000000L); // Thread1通过CAS修改value值为3 if (atomicStampedReference.compareAndSet(value, 3,stamp,stamp+1)) { log.debug("Thread1 update from " + value + " to 3"); } else { log.debug("Thread1 update fail!"); } },"Thread1").start(); new Thread(()->{ int[] stampHolder = new int[1]; int value = (int)atomicStampedReference.get(stampHolder); int stamp = stampHolder[0]; log.debug("Thread2 read value: " + value+ ", stamp: " + stamp); // Thread2通过CAS修改value值为2 if (atomicStampedReference.compareAndSet(value, 2,stamp,stamp+1)) { log.debug("Thread2 update from " + value + " to 2"); // do something value = (int) atomicStampedReference.get(stampHolder); stamp = stampHolder[0]; log.debug("Thread2 read value: " + value+ ", stamp: " + stamp); // Thread2通过CAS修改value值为1 if (atomicStampedReference.compareAndSet(value, 1,stamp,stamp+1)) { log.debug("Thread2 update from " + value + " to 1"); } } },"Thread2").start(); } }
补充:AtomicMarkableReference可以理解为上面AtomicStampedReference的简化版,就是不关心修改过几次,仅仅关心是否修改过。因此变量mark是boolean类型,仅记录值是否有过修改。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)