首先放出代码
int gcd(int a, int b) { if(a%b == 0) return b; else return gcd(b, a%b); }
辗转相除是将a与b相除得到余数k,如果余数k==0则返回值b,如果k不为0则将 除数b 与 k 相除,再判断第二次的余数k2是否为零,如此反复,故为辗转相除。
其实现原理:
举个例子,求30与21的最大公因数。假设最大公因数为x,那么30%x == 0, 21%x == 0,
故(30-21)%x == 0(将30拆为 21 与 9, 21 % x == 0, 所以 9 % x == 0)。继续,21中有两个9,21 - 9*2 = 3, 所以 3%x == 0。因为 9%3 == 0 所以3就是最终结果。
其实就是将一个 较大的数(x的倍数)中若干个 较小的数(依然是x倍数)剔除,剩下的部分依然是 x的倍数,然后一直进行剔除步骤,直到无法继续剔除,最后的值就是我们需要的最大公因数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)