基于Python的百度AI人脸识别API接口(可用于OpenCV-Python人脸识别)
资源:
https://download.csdn.net/download/weixin_53403301/43644312
之前的项目:
【最新】基于OpenCV的Python人脸识别、检测、框选(遍历目录下所有照片依次识别 视频随时标注)
https://blog.csdn.net/weixin_53403301/article/details/119422635
基于OpenCV-Python的树莓派人脸识别及89C52单片机控制系统设计(指定照片进行识别、遍历目录下所有照片依次识别)
https://blog.csdn.net/weixin_53403301/article/details/118575731
直接上代码:
# -*- coding: utf-8 -*- """ Created on Mon May 31 23:40:16 2021 @author: ZHOU """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- import requests # 调用 requests的HTTP协议库 import os # 调用os多 *** 作系统接口库 import base64 # 调用base64编码库 import json # 调用Javascript Object Notation数据交换格式 ACCESS_TOKEN = '' base_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #去掉文件名,返回目录 # ID,KEY的配置信息 INFO_ConFIG = { 'ID': '15050553', 'API_KEY': 'rlRrtRL5oRdXGh71jgg1OmyN', 'SECRET_KEY': 'dK5TpuTAZn2nw5eVpspZLmF5Qs1Uu8A1' } """ 若API出错 则改为: INFO_ConFIG = { 'ID': '15050553', 'API_KEY': 'rlRrtRL5oRdXGh71jgg1OmyN', 'SECRET_KEY': 'dK5TpuTAZn2nw5eVpspZLmF5Qs1Uu8A1' } 或: INFO_ConFIG = { 'ID': '15788358', 'API_KEY': 'ohtGa5yYoQEZ8Try8lnL99UK', 'SECRET_KEY': 'qaDjyuXkf5MZ28g5C8pwFngDZenhswC3' } """ # URL配置 URL_LIST_URL = { # ACCESS_TOKEN_URL用于获取ACCESS_TOKEN, POST请求, # grant_type必须参数,固定为client_credentials,client_id必须参数,应用的API Key,client_secre 必须参数,应用的Secret Key. 'ACCESS_TOKEN_URL': 'https://aip.baidubce.com/oauth/2.0/token?' + 'grant_type=client_credentials&client_id={API_KEYS}&client_secret={SECRET_KEYS}&'.format( API_KEYS=INFO_CONFIG['API_KEY'], SECRET_KEYS=INFO_CONFIG['SECRET_KEY']), # 登入人脸识别机器学习库 'FACE_PLATE': 'https://aip.baidubce.com/rest/2.0/face/v3/match', } class AccessTokenSuper(object): pass class AccessToken(AccessTokenSuper): # 定义登陆API大类 def getToken(self): accessToken = requests.post(url=URL_LIST_URL['ACCESS_TOKEN_URL']) #登入网址 accessTokenJson = accessToken.json() if dict(accessTokenJson).get('error') == 'invalid_client': return '获取accesstoken错误,请检查API_KEY,SECRET_KEY是否正确!' return accessTokenJson ACCESS_TOKEN = AccessToken().getToken()['access_token'] LICENSE_PLATE_URL = URL_LIST_URL['FACE_PLATE'] + '?access_token={}'.format(ACCESS_TOKEN) class faceSuper(object): pass class face(faceSuper): # 定义图像输入大类 def __init__(self, image=None, image2=None): # 定义初始化函数 self.HEADER = { 'Content-Type': 'application/json; charset=UTF-8', } if image is not None: # 没有图像1 imagepath = os.path.exists(image) if imagepath == True: images = image with open(images, 'rb') as images: img1 = base64.b64encode(images.read()) else: print("图像1不存在") return if image2 is not None: # 没有图像2 imagepath2 = os.path.exists(image2) if imagepath2 == True: images2 = image2 with open(images2, 'rb') as images2: img2 = base64.b64encode(images2.read()) else: print("图像2不存在") return self.img = img1 self.imgs = img2 self.IMAGE_CONFIG1 = {"image": str(img1, 'utf-8'), "image_type": "base64"} self.IMAGE_CONFIG2 = {"image": str(img2, 'utf-8'), "image_type": "base64"} self.IMAGE_ConFIG = json.dumps([self.IMAGE_CONFIG1, self.IMAGE_CONFIG2]) def postface(self): # 定义从服务器进行数据获取函数 if (self.img==None and self.imgs==None): return '图像不存在' face = requests.post(url=LICENSE_PLATE_URL, headers=self.HEADER, data=self.IMAGE_CONFIG) # 登陆服务器获取数据 return face.json() # 输出结果 def facef(FA1, FA2): # 人脸识别逻辑函数 testAccessToken = AccessToken() # 获取API配置 testface = face(image=FA1, image2=FA2) # 赋值给图像输入大类 result_json = testface.postface() # 从服务器获取数据 result = result_json['result']['score'] #输出结果 print('人脸相似度:', result) if result > 80: # 识别结果大于80则成功 print("人脸匹配成功!") # if result < 20: # print("未检测到人脸!") else: print("人脸匹配失败!") return '人脸相似度:' + str(result), result # 输出字符串结果
快速版:
# -*- coding: utf-8 -*- """ Created on Mon May 31 23:40:16 2021 @author: ZHOU """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- import requests # 调用 requests的HTTP协议库 import os # 调用os多 *** 作系统接口库 import base64 # 调用base64编码库 import json # 调用Javascript Object Notation数据交换格式 ACCESS_TOKEN = '' base_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #去掉文件名,返回目录 # ID,KEY的配置信息 INFO_ConFIG = { 'ID': '15050553', 'API_KEY': 'rlRrtRL5oRdXGh71jgg1OmyN', 'SECRET_KEY': 'dK5TpuTAZn2nw5eVpspZLmF5Qs1Uu8A1' } """ 若API出错 则改为: INFO_ConFIG = { 'ID': '15050553', 'API_KEY': 'rlRrtRL5oRdXGh71jgg1OmyN', 'SECRET_KEY': 'dK5TpuTAZn2nw5eVpspZLmF5Qs1Uu8A1' } 或: INFO_ConFIG = { 'ID': '15788358', 'API_KEY': 'ohtGa5yYoQEZ8Try8lnL99UK', 'SECRET_KEY': 'qaDjyuXkf5MZ28g5C8pwFngDZenhswC3' } """ # URL配置 URL_LIST_URL = { # ACCESS_TOKEN_URL用于获取ACCESS_TOKEN, POST请求, # grant_type必须参数,固定为client_credentials,client_id必须参数,应用的API Key,client_secre 必须参数,应用的Secret Key. 'ACCESS_TOKEN_URL': 'https://aip.baidubce.com/oauth/2.0/token?' + 'grant_type=client_credentials&client_id={API_KEYS}&client_secret={SECRET_KEYS}&'.format( API_KEYS=INFO_CONFIG['API_KEY'], SECRET_KEYS=INFO_CONFIG['SECRET_KEY']), # 登入人脸识别机器学习库 'FACE_PLATE': 'https://aip.baidubce.com/rest/2.0/face/v3/match', } class AccessTokenSuper(object): pass class AccessToken(AccessTokenSuper): # 定义登陆API大类 def getToken(self): accessToken = requests.post(url=URL_LIST_URL['ACCESS_TOKEN_URL']) #登入网址 accessTokenJson = accessToken.json() if dict(accessTokenJson).get('error') == 'invalid_client': return '获取accesstoken错误,请检查API_KEY,SECRET_KEY是否正确!' return accessTokenJson ACCESS_TOKEN = AccessToken().getToken()['access_token'] LICENSE_PLATE_URL = URL_LIST_URL['FACE_PLATE'] + '?access_token={}'.format(ACCESS_TOKEN) class faceSuper(object): pass class face(faceSuper): # 定义图像输入大类 def __init__(self, image=None, image2=None): # 定义初始化函数 self.HEADER = { 'Content-Type': 'application/json; charset=UTF-8', } if image is not None: # 没有图像1 imagepath = os.path.exists(image) if imagepath == True: images = image with open(images, 'rb') as images: img1 = base64.b64encode(images.read()) else: print("图像1不存在") return if image2 is not None: # 没有图像2 imagepath2 = os.path.exists(image2) if imagepath2 == True: images2 = image2 with open(images2, 'rb') as images2: img2 = base64.b64encode(images2.read()) else: print("图像2不存在") return self.img = img1 self.imgs = img2 self.IMAGE_CONFIG1 = {"image": str(img1, 'utf-8'), "image_type": "base64"} self.IMAGE_CONFIG2 = {"image": str(img2, 'utf-8'), "image_type": "base64"} self.IMAGE_ConFIG = json.dumps([self.IMAGE_CONFIG1, self.IMAGE_CONFIG2]) def postface(self): # 定义从服务器进行数据获取函数 if (self.img==None and self.imgs==None): return '图像不存在' face = requests.post(url=LICENSE_PLATE_URL, headers=self.HEADER, data=self.IMAGE_CONFIG) # 登陆服务器获取数据 return face.json() # 输出结果 def facef(FA1, FA2): # 人脸识别逻辑函数 testAccessToken = AccessToken() # 获取API配置 testface = face(image=FA1, image2=FA2) # 赋值给图像输入大类 result_json = testface.postface() # 从服务器获取数据 result = result_json['result']['score'] #输出结果 print('人脸相似度:', result) # if result > 80: # 识别结果大于80则成功 # print("人脸匹配成功!") # if result < 20: # print("未检测到人脸!") # else: # print("人脸匹配失败!") return '人脸相似度:' + str(result), result # 输出字符串结果
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)