Educoder 机器学习 第1关:基于贝叶斯决策理论的分类方法

Educoder 机器学习 第1关:基于贝叶斯决策理论的分类方法,第1张

Educoder 机器学习 第1关:基于贝叶斯决策理论的分类方法 第1关:基于贝叶斯决策理论的分类方法 任务描述

本关任务:理解朴素贝叶斯的分类思想,完成编程习题。

相关知识

为了完成本关任务,你需要掌握:1.贝叶斯,2.朴素贝叶斯。

贝叶斯

朴素贝叶斯是贝叶斯决策理论的一部分,所以讲述朴素负叶斯之前有必要快速了解一下贝叶斯决策理论。 假设现在我们有一个数据集,它由两类数据组成,数据分布如图1所示。

图1 两个参数已知的概率分布,参数决定了分布的形状。

假设有位读者找到了描述图中两类数据的统计参数。(暂且不用管如何找到描述这类数据的统计参数,后面会详细介绍。)我们现在用p1(x,y)表示数据点(x,y)属于类别1(以图中用圆点表示的类别)的概率,用p2(x,y) 表示数据点(x,y)属于类别2 ( 图中用三角形表示的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别: (1)如果 p1(x,y) > p2(x,y),那么类别为1。 (2)如果 p2(x,y) > pl(x,y),那么类别为2。 也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

朴素贝叶斯

优点:在数据较少的情况下仍然有效,可以处理多类别问题。 缺点:对于输入数据的准备方式较为敏感。 适用数据类型:标称型数据。

回到图1,如果该图中的整个数据使用6个浮点数来表示,并且计算类别概 率的python代码只有两行,那么你会更倾向于使用下面哪种方法来对该数据点进行分类? (1)使用第1章的kNN,进行1000次距离计算; (2)使用第2章的决策树,分别沿x轴 、y轴划分数据; (3)计算数据点属于每个类别的概率,并进行比较。 使用决策树不会非常成功;而和简单的概率计算相比,kNN的计算量太大。因此,对于上述问题,最佳选择是使用刚才提到的概率比较方法。

编程要求

根据提示,在右侧编辑器补充代码,运行程序。

测试说明

根据所学完成右侧编程题。


开始你的任务吧,祝你成功!

import numpy as np

'''
Parameters:
    无
Returns:
    postingList - 实验样本切分的词条
    classVec - 类别标签向量
'''
# 函数说明:创建实验样本
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],       #切分的词条
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]#类别标签向量,1代表侮辱性词汇,0代表不是
    return postingList,classVec

'''
Parameters:
    vocabList - createVocabList返回的列表
    inputSet - 切分的词条列表
Returns:
    returnVec - 文档向量,词集模型
'''
# 函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)                               #创建一个其中所含元素都为0的向量
    for word in inputSet:                                          #遍历每个词条
        if word in vocabList:                                      #如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec                                               #返回文档向量

'''
Parameters:
    dataSet - 整理的样本数据集
Returns:
    vocabSet - 返回不重复的词条列表,也就是词汇表
'''
# 函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表
def createVocabList(dataSet):
    vocabSet = set([])                      #创建一个空的不重复列表
    for document in dataSet:
        vocabSet = vocabSet | set(document) #取并集
    return list(vocabSet)

'''
Parameters:
    trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
    trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
    p0Vect - 侮辱类的条件概率数组
    p1Vect - 非侮辱类的条件概率数组
    pAbusive - 文档属于侮辱类的概率
'''
# 函数说明:朴素贝叶斯分类器训练函数
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)                     #计算训练的文档数目
    numWords = len(trainMatrix[0])                      #计算每篇文档的词条数
    pAbusive = sum(trainCategory)/float(numTrainDocs)   #文档属于侮辱类的概率
    p0Num = np.ones(numWords); p1Num = np.ones(numWords)#创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
    p0Denom = 2.0; p1Denom = 2.0                        #分母初始化为2,拉普拉斯平滑
    for i in range(numTrainDocs):
        ##########
       if trainCategory[i]==1:
            p1Num+=trainMatrix[i]
            p1Denom+=sum(trainMatrix[i])
       else:
            p0Num+=trainMatrix[i]
            p0Denom+=sum(trainMatrix[i])
        
        ##########
    p1Vect = np.log(p1Num/p1Denom)                      #取对数,防止下溢出
    p0Vect = np.log(p0Num/p0Denom)
    #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
    return p0Vect,p1Vect,pAbusive

if __name__ == '__main__':
    postingList, classVec = loadDataSet()
    myVocabList = createVocabList(postingList)
    print('myVocabList:n', myVocabList)
    trainMat = []
    #for循环使用词向量来填充trainMat列表
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V, p1V, pAb = trainNB0(trainMat, classVec)
    print('p0V:n', p0V)
    print('p1V:n', p1V)
    print('classVec:n', classVec)
    print('pAb:n', pAb)

 

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5593270.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-15
下一篇 2022-12-15

发表评论

登录后才能评论

评论列表(0条)

保存