@frankyjuang将我链接到这里
https://github.com/amir-abdi/keras_to_tensorflow
并将其与来自
https://github.com/metaflow-ai/blog/blob/master/tf-
freeze/load.py
和
https://github.com/tensorflow/tensorflow/issues/675
我找到了既可以使用tf图进行预测又可以创建jacobian函数的解决方案:
import tensorflow as tfimport numpy as np# Create function to convert saved keras model to tensorflow graphdef convert_to_pb(weight_file,input_fld='',output_fld=''): import os import os.path as osp from tensorflow.python.framework import graph_util from tensorflow.python.framework import graph_io from keras.models import load_model from keras import backend as K # weight_file is a .h5 keras model file output_node_names_of_input_network = ["pred0"] output_node_names_of_final_network = 'output_node' # change filename to a .pb tensorflow file output_graph_name = weight_file[:-2]+'pb' weight_file_path = osp.join(input_fld, weight_file) net_model = load_model(weight_file_path) num_output = len(output_node_names_of_input_network) pred = [None]*num_output pred_node_names = [None]*num_output for i in range(num_output): pred_node_names[i] = output_node_names_of_final_network+str(i) pred[i] = tf.identity(net_model.output[i], name=pred_node_names[i]) sess = K.get_session() constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), pred_node_names) graph_io.write_graph(constant_graph, output_fld, output_graph_name, as_text=False) print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name)) return output_fld+output_graph_name
呼叫:
tf_model_path = convert_to_pb('model_file.h5','/model_dir/','/model_dir/')
创建函数以将tf模型加载为图形:
def load_graph(frozen_graph_filename): # We load the protobuf file from the disk and parse it to retrieve the # unserialized graph_def with tf.gfile.GFile(frozen_graph_filename, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # Then, we can use again a convenient built-in function to import a graph_def into the # current default Graph with tf.Graph().as_default() as graph: tf.import_graph_def( graph_def, input_map=None, return_elements=None, name="prefix", op_dict=None, producer_op_list=None ) input_name = graph.get_operations()[0].name+':0' output_name = graph.get_operations()[-1].name+':0' return graph, input_name, output_name
创建一个函数以使用tf图进行模型预测
def predict(model_path, input_data): # load tf graph tf_model,tf_input,tf_output = load_graph(model_path) # Create tensors for model input and output x = tf_model.get_tensor_by_name(tf_input) y = tf_model.get_tensor_by_name(tf_output) # Number of model outputs num_outputs = y.shape.as_list()[0] predictions = np.zeros((input_data.shape[0],num_outputs)) for i in range(input_data.shape[0]): with tf.Session(graph=tf_model) as sess: y_out = sess.run(y, feed_dict={x: input_data[i:i+1]}) predictions[i] = y_out return predictions
作出预测:
tf_predictions = predict(tf_model_path,test_data)
雅可比函数:
def compute_jacobian(model_path,input_data): tf_model,tf_input,tf_output = load_graph(model_path) x = tf_model.get_tensor_by_name(tf_input) y = tf_model.get_tensor_by_name(tf_output) y_list = tf.unstack(y) num_outputs = y.shape.as_list()[0] jacobian = np.zeros((num_outputs,input_data.shape[0],input_data.shape[1])) for i in range(input_data.shape[0]): with tf.Session(graph=tf_model) as sess: y_out = sess.run([tf.gradients(y_, x)[0] for y_ in y_list], feed_dict={x: input_data[i:i+1]}) jac_temp = np.asarray(y_out) jacobian[:,i:i+1,:]=jac_temp[:,:,:,0] return jacobian
计算雅可比矩阵:
jacobians = compute_jacobian(tf_model_path,test_data)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)