ConcurrentHashMap扩容机制源码分析

ConcurrentHashMap扩容机制源码分析,第1张

ConcurrentHashMap扩容机制源码分析

首先思考几个问题:

  • ConcurrentHashMap是如何实现扩容机制的?

  • 多线程辅助扩容?如何分配扩容迁移任务?

源码分析:

public V put(K key, V value) {
    return putVal(key, value, false);
}

final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    // 1. 哈希值高低位扰动
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node[] tab = table;;) {
        Node f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            // 2. tab 为空 初始化 懒汉模式
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 3. tab不为null,则通过(n - 1) & hash 计算 tab对应索引下标,找到node
            // node为null说明没有发生hash冲突,cas 设置新节点node到tab的对应位置,成功则结束循环
            if (casTabAt(tab, i, null,
                         new Node(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            // 4. 发现哈希值为MOVED时,
            // 说明数组正在扩容,帮助扩容,这个节点只可能是ForwardingNode
            tab = helpTransfer(tab, f);
        else {
            // 5.正常情况下发生哈希冲突
            V oldVal = null;
            synchronized (f) {
                // 再次检查i位置的节点是否还是f
                // 如果有变动则重新循环
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) {
                        // 6. fh>=0 是链表
                        binCount = 1;
                        for (Node e = f;; ++binCount) {
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                // 链表中已经有hash相等且(key地址相等 or key值相等)
                                // 则判断是否需要替换
                                // put onlyIfAbsent=false,新值替换旧值
                                // putIfAbsent onlyIfAbsent=true,新值不替换旧值
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            // 解决hash冲突的方式
                            // 链表法,新节点放在了链表尾部(尾插法),这里和jdk1.7不一样
                            Node pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) {
                        // 7.红黑树
                        Node p;
                        binCount = 2;
                        if ((p = ((TreeBin)f).putTreeval(hash, key,
                                                       value)) != null) {
                            // putTreeval的返回值是已经存在的节点
                            // p != null 说明 key已经存在,看是否需要替换value
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                // 8. binCount,链表的长度>=8时 可能变为红黑树,也可能是扩容
                // 数组长度小于64时,是扩容数组
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    // 若旧值不为null,则说明是替换,不需要后面的addCount
                    return oldVal;
                break;
            }
        }
    }
    // 9. 元素数量+1
    addCount(1L, binCount);
    return null;
}

 技术点:

1、懒汉模式 ,需要的时候才初始化数组

2、(fh = f.hash) == MOVED 即ForwardingNode节点。

        1)代表正在扩容

        2)get 获取数据时,从新数组获取 

3、synchronized锁住头节点,fh > 0 代表链表;f instanceof TreeBin 代表红黑树

4、addCount利用了LongAddr类的原理。下次再说这个类

5、这的循环好好理解一下,以后自己代码会不会用上。这很多源码都用到循环,好好理解(有些我也不懂)

6、初始化前,sizeCtl存的是初始容量;初始化完成,sizeCtl又被赋值为扩容阈值,当前容量的 3/4,也代表释放锁;初始化时,sizeCtl相当于一把自旋锁,有且只有一个线程能将其cas修改为-1,代表获取锁。

7、真正迁移干活的时候用synchronized锁住头节点;

重点理解helpTransfer(tab, f)源码

//扩容状态下其他线程对集合进行插入、修改、删除、合并、compute等 *** 作时遇到 ForwardingNode 节点会调用该帮助扩容方法 (ForwardingNode 后面介绍)
final Node[] helpTransfer(Node[] tab, Node f) {
    Node[] nextTab; int sc;
    if (tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode)f).nextTable) != null) {
        int rs = resizeStamp(tab.length);
        //此处的 琢磨琢磨三个条件判断
        while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) {
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                transfer(tab, nextTab);
                break;
            }
        }
        return nextTab;
    }
    return table;
}

知识点:

1、int rs = resizeStamp(tab.length);

static final int resizeStamp(int n) {
    return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
}

Integer.numberOfLeadingZeros(n)的作用是获取 n 的二进制从左往右连续的 0 的个数,比如 

2的二进制10从左往右有30个连续的0
4的二进制100从左往右有29个连续的0   
8的二进制1000从左往右有28个连续的0
16的二进制10000从左往右有27个连续的0
(int有32位,左边不足的补0)    

所以resizeStamp计算过程示例: 

n=2,  resizeStamp=30+32768=32798,二进制:1000 0000 0001 1110
n=4,  resizeStamp=29+32768=32797,二进制:1000 0000 0001 1101
n=8,  resizeStamp=28+32768=32796,二进制:1000 0000 0001 1100
n=16, resizeStamp=27+32768=32795,二进制:1000 0000 0001 1011

返回值作为正在扩容数组的长度 n 的一个标志位?的确可以,比如 32798 是 n=4 的扩容标志位,32-(32797-32768)可反推出 n=4。

(sc >>> RESIZE_STAMP_SHIFT) != rs好多地方讲解还是没理解,希望以后再看看

sc此时的值就是sizeCtl,此时sizeCtl的值是多少呢,那一刻赋值的?

这个bug在Java 12及之后的版本修复了,所以下面来看一下这块改成了什么。JDK12对比

transfer 元素迁移 

private final void transfer(Node[] tab, Node[] nextTab) {
    int n = tab.length, stride;
    // 单核不拆分,下面讨论多核的情况
    // 计算步长,拆分任务n >>> 3 = n / 2^3
    // 先将n分为8份,然后等分给每个cpu,若最后计算的步长小于最小步长16,则设置为16
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    if (nextTab == null) {            // initiating
        try {
            // 扩容 2倍
            @SuppressWarnings("unchecked")
            Node[] nt = (Node[])new Node[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        // transferIndex 记录迁移进度
        transferIndex = n;
    }
    int nextn = nextTab.length;
    ForwardingNode fwd = new ForwardingNode(nextTab);
    // 从后面的迁移逻辑看到 迁移复制元素是逆序迁移
    // advance= true 则代表可继续向前一个位置迁移复制元素
    boolean advance = true;
    // 是否所有线程都全部迁移完毕,true则可以将nextTab赋值给table了
    boolean finishing = false; // to ensure sweep before committing nextTab
    // i 代表当前线程正在迁移的数组位置,bound代表它本次可以迁移的范围下限
    for (int i = 0, bound = 0;;) {
        Node f; int fh;
        while (advance) {
            int nextIndex, nextBound;
           // (1)两种情况不需要继续向前一个位置迁移复制元素(逆序):
            // ①i每次自减1,i>=bound说明本批次迁移未完成,不需要继续向前推进。
            // ②finishing标志为true,说明所有线程分配的迁移任务都已经完成了,则不需要向前推进。
            // 若 --i < bound,说明当前批次的迁移任务完成,可继续分配新范围的任务
            // 也就是一个线程可以多次分到任务,能者多劳。
            if (--i >= bound || finishing)
                // 向前一个位置迁移复制元素
                advance = false;
             //(2) 每次执行,都会把 transferIndex 最新的值同步给 nextIndex
            else if ((nextIndex = transferIndex) <= 0) {
                //若 transferIndex小于等于0,则说明原数组中所有位置的迁移任务都分配完毕(不代表所有位置都迁移完毕)
                //于是,需要跳出while循环,并把 i设为 -1,
                // 以跳到(4)判断正在处理的线程是否完成自己负责范围内迁移工作。
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                //(3)cas 设置TRANSFERINDEX,分配任务范围[nextBound,nextIndex),任务的长度是stride
                // 举例,假设 n=64,即初始的transferIndex=64,stride=16
                // nextIndex=transferIndex=64,nextBound=nextIndex-stride=48
                // bound=48
                // i=63
                // 从后往前复制
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;  // 本次任务分配完成,结束循环
            }
        }
        // (4)i已经越界了,整个数组的迁移任务已经全部分配完毕
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                // 扩容完毕
                // nextTable置为空
                nextTable = null;
                // 新数组赋值给旧数组
                table = nextTab;
                // sizeCtl 设置为新的数组长度的 3/4.即 3/4 *2n
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            // 到这,说明所有的迁移任务都分配完了
            // 当前线程也已经完成了自己的迁移任务(无论参与了几次迁移),
            // 则sc-1,表明参与扩容的线程数减1
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 迁移开始时,会设置 sc=(rs << RESIZE_STAMP_SHIFT) + 2
                // 每当有一个线程参与迁移,sc 就会加 1。
                // 因此,这里就是去校验当前 sc 是否和初始值相等。
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    // 不相等,当前线程扩容任务结束。
                    return;
                // 相等,说明还有一个线程还在扩容迁移(不一定是触发扩容的第一个线程)
                // 则当前线程会从后向前检查一遍,哪些位置的节点没有复制完,就帮忙一起复制。
                // 一圈扫描下来,肯定是全部迁移完毕了,则finishing可提前设置为true。
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        else if ((f = tabAt(tab, i)) == null)
            // (5)若i的位置元素为空,就把占位节点设置为fwd标志。
            // 设置成功,advance置为true,向前推进复制 
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
            // (6)若当前位置的头结点是 ForwardingNode ,则说明这个位置的所有节点已经迁移完成,
            // 可以继续向前迁移复制其他位置的节点
            advance = true; // already processed
        else {
            // (7)对tab[i]进行迁移,可能是链表 or 红黑树
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node ln, hn;
                    if (fh >= 0) {
                        // 链表
                        int runBit = fh & n;
                        Node lastRun = f;
                        // lastRun并不是一条链表的最后一个,一条链表的节点可以分为两类,
                        // 在循环中寻找lastRun的满足条件是链表中最后一个与前一个节点runBit不相等的节点作为lastRun,
                        // 而此时lastRun后面可能还有节点,但runBit都是和lastRun相等的节点。
                        // 这里找lastRun和java7是一样的
                        for (Node p = f.next; p != null; p = p.next) {
                            // 计算p的位置
                            int b = p.hash & n;
                            if (b != runBit) {
                                // 和runBit不是同一位置
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        // hash & n=0为低位节点,hash & n!=0为高位节点。
                        // 判断找到的lastRun是低位节点还是高位节点
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        // lastRun之前的结点因为fh&n不确定,所以全部需要再hash分配。
                        for (Node p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node(ph, pk, pv, ln);
                            else
                                hn = new Node(ph, pk, pv, hn);
                        }
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        // 是红黑树,
                        // 原理上和链表迁移的过程差不多,也是将节点分成高位节点和低位节点
                        TreeBin t = (TreeBin)f;
                        // lo低位树头节点,loTail低位树尾节点
                        // hi高位树头节点,hiTail高位树尾节点
                        TreeNode lo = null, loTail = null;
                        TreeNode hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode p = new TreeNode
                                (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                // 尾插法
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        // 低位节点的个数 <= UNTREEIFY_THRESHOLD=6, 则树退为链表
                        // 否则判断是否有高位节点,无,则原先那棵树t就是一棵低位树,直接赋值给ln
                        // 有高位节点,则低位节点重新树化。
                        // 高位节点的判断同理
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin(hi) : t;
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}

知识点:

1、利用CPU数量控制分配线程;stride 最少16桶;每个线程的桶的范围的控制 

2、transferIndex 记录迁移进度,首次就是数组的长度n。transferIndex<0分配线程任务完成(最后一个线程执行完,再算扩容完成);

3、advance= true 则代表可继续向前一个位置迁移复制元素。

4、i 代表当前线程正在迁移的数组位置(当前线程数组下标),bound代表它本次可以迁移的范围下限(下面有盗图)

5、while (advance)循环就办了一件事,当前线程下层次递进迁移链表或红黑树,--i;此时又一个线程进入while(advance)循环(一直想着多线程过来咋办),执行nextIndex = transferIndex) <= 0

6、迁移开始时,会设置 sc=(rs << RESIZE_STAMP_SHIFT) + 2;(sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT说明扩容已经完成;

7、lastRun节点的寻找(看下面的盗图)

8、ln和hn拆分的高低链表

9、定义了规则,简化了复杂度

画图

多线程如何分配任务

普通链表如何迁移

什么是 lastRun 节点 

hash桶迁移中以及迁移后如何处理存取请求 

 

多线程迁移任务完成后的 *** 作

写到这感觉sizeCtl挺重要的,也许我没理解清楚。

参考路径:ConcurrentHashMap1.8 - 扩容详解_ZOKEKAI的博客-CSDN博客_concurrenthashmap 扩容

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5611588.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-15
下一篇 2022-12-15

发表评论

登录后才能评论

评论列表(0条)

保存