在使用conda tensorflow-gpu软件包之前是否仍然需要安装CUDA?

在使用conda tensorflow-gpu软件包之前是否仍然需要安装CUDA?,第1张

在使用conda tensorflow-gpu软件包之前是否仍然需要安装CUDA?

我现在是否已安装两个版本的CUDA,该如何检查?

没有。

conda将安装支持其提供的CUDA加速软件包所需的最少可再发行库组件。软件包名称

cudatoolkit
是完整的误称。这不是什么。即使现在它的范围已从以前的范围(从原来的5个文件大大扩展了,我认为在某些时候他们也一定已经从NVIDIA获得了许可协议,因为其中一些不在/不在官方的“自由重新分发”列表AFAIK),它基本上仍然只是少数几个库。

您可以自己检查:

cat /opt/miniconda3/conda-meta/cudatoolkit-10.1.168-0.json {  "build": "0",  "build_number": 0,  "channel": "https://repo.anaconda.com/pkgs/main/linux-64",  "constrains": [],  "depends": [],  "extracted_package_dir": "/opt/miniconda3/pkgs/cudatoolkit-10.1.168-0",  "features": "",  "files": [    "lib/cudatoolkit_config.yaml",    "lib/libcublas.so",    "lib/libcublas.so.10",    "lib/libcublas.so.10.2.0.168",    "lib/libcublasLt.so",    "lib/libcublasLt.so.10",    "lib/libcublasLt.so.10.2.0.168",    "lib/libcudart.so",    "lib/libcudart.so.10.1",    "lib/libcudart.so.10.1.168",    "lib/libcufft.so",    "lib/libcufft.so.10",    "lib/libcufft.so.10.1.168",    "lib/libcufftw.so",    "lib/libcufftw.so.10",    "lib/libcufftw.so.10.1.168",    "lib/libcurand.so",    "lib/libcurand.so.10",    "lib/libcurand.so.10.1.168",    "lib/libcusolver.so",    "lib/libcusolver.so.10",    "lib/libcusolver.so.10.1.168",    "lib/libcusparse.so",    "lib/libcusparse.so.10",    "lib/libcusparse.so.10.1.168",    "lib/libdevice.10.bc",    "lib/libnppc.so",    "lib/libnppc.so.10",    "lib/libnppc.so.10.1.168",    "lib/libnppial.so",    "lib/libnppial.so.10",    "lib/libnppial.so.10.1.168",    "lib/libnppicc.so",    "lib/libnppicc.so.10",    "lib/libnppicc.so.10.1.168",    "lib/libnppicom.so",    "lib/libnppicom.so.10",    "lib/libnppicom.so.10.1.168",    "lib/libnppidei.so",    "lib/libnppidei.so.10",    "lib/libnppidei.so.10.1.168",    "lib/libnppif.so",    "lib/libnppif.so.10",    "lib/libnppif.so.10.1.168",    "lib/libnppig.so",    "lib/libnppig.so.10",    "lib/libnppig.so.10.1.168",    "lib/libnppim.so",    "lib/libnppim.so.10",    "lib/libnppim.so.10.1.168",    "lib/libnppist.so",    "lib/libnppist.so.10",    "lib/libnppist.so.10.1.168",    "lib/libnppisu.so",    "lib/libnppisu.so.10",    "lib/libnppisu.so.10.1.168",    "lib/libnppitc.so",    "lib/libnppitc.so.10",    "lib/libnppitc.so.10.1.168",    "lib/libnpps.so",    "lib/libnpps.so.10",    "lib/libnpps.so.10.1.168",    "lib/libnvToolsExt.so",    "lib/libnvToolsExt.so.1",    "lib/libnvToolsExt.so.1.0.0",    "lib/libnvblas.so",    "lib/libnvblas.so.10",    "lib/libnvblas.so.10.2.0.168",    "lib/libnvgraph.so",    "lib/libnvgraph.so.10",    "lib/libnvgraph.so.10.1.168",    "lib/libnvjpeg.so",    "lib/libnvjpeg.so.10",    "lib/libnvjpeg.so.10.1.168",    "lib/libnvrtc-builtins.so",    "lib/libnvrtc-builtins.so.10.1",    "lib/libnvrtc-builtins.so.10.1.168",    "lib/libnvrtc.so",    "lib/libnvrtc.so.10.1",    "lib/libnvrtc.so.10.1.168",    "lib/libnvvm.so",    "lib/libnvvm.so.3",    "lib/libnvvm.so.3.3.0"  ]  .....

即您得到的是(记住上面的那些“文件”大部分只是符号链接)

  • CUBLAS运行时
  • CUDA运行时库
  • CUFFT运行时
  • CUrand运行时
  • 稀疏的rutime
  • CUsolver运行时
  • NPP运行时
  • nvblas运行时
  • NVTX运行时
  • NVgraph运行时
  • NVjpeg运行时
  • NVRTC / NVVM运行时

conda安装的CUDNN软件包是可再发行的二进制发行版,与NVIDIA发行的二进制发行版完全相同-正好是两个文件,一个头文件和一个库。

您仍然需要安装受支持的NVIDIA驱动程序,才能使conda安装的tensorflow正常工作。



欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5617381.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-15
下一篇 2022-12-15

发表评论

登录后才能评论

评论列表(0条)

保存