在OP链接的文件中,以下字符串:
产量:
2-skip-bi-grams =
2-skip-tri-grams =
{叛乱分子被杀,叛乱分子被杀,正在进行中的叛乱分子被杀,正在进行中的叛乱分子,在战斗中的叛乱分子,叛乱分子在进行中的战斗,在进行中被杀,在战斗中被杀,在战斗中被杀,在进行中的战斗}。
略微修改NLTK的
ngrams代码(https://github.com/nltk/nltk/blob/develop/nltk/util.py#L383):
from itertools import chain, combinationsimport copyfrom nltk.util import ngramsdef pad_sequence(sequence, n, pad_left=False, pad_right=False, pad_symbol=None): if pad_left: sequence = chain((pad_symbol,) * (n-1), sequence) if pad_right: sequence = chain(sequence, (pad_symbol,) * (n-1)) return sequencedef skipgrams(sequence, n, k, pad_left=False, pad_right=False, pad_symbol=None): sequence_length = len(sequence) sequence = iter(sequence) sequence = pad_sequence(sequence, n, pad_left, pad_right, pad_symbol) if sequence_length + pad_left + pad_right < k: raise Exception("The length of sentence + padding(s) < skip") if n < k: raise Exception("Degree of Ngrams (n) needs to be bigger than skip (k)") history = [] nk = n+k # Return point for recursion. if nk < 1: return # If n+k longer than sequence, reduce k by 1 and recur elif nk > sequence_length: for ng in skipgrams(list(sequence), n, k-1): yield ng while nk > 1: # Collects the first instance of n+k length history history.append(next(sequence)) nk -= 1 # Iterative drop first item in history and picks up the next # while yielding skipgrams for each iteration. for item in sequence: history.append(item) current_token = history.pop(0) # Iterates through the rest of the history and # pick out all combinations the n-1grams for idx in list(combinations(range(len(history)), n-1)): ng = [current_token] for _id in idx: ng.append(history[_id]) yield tuple(ng) # Recursively yield the skigrams for the rest of seqeunce where # len(sequence) < n+k for ng in list(skipgrams(history, n, k-1)): yield ng
让我们做一些doctest来匹配本文中的示例:
>>> two_skip_bigrams = list(skipgrams(text, n=2, k=2))[('Insurgents', 'killed'), ('Insurgents', 'in'), ('Insurgents', 'ongoing'), ('killed', 'in'), ('killed', 'ongoing'), ('killed', 'fighting'), ('in', 'ongoing'), ('in', 'fighting'), ('ongoing', 'fighting')]>>> two_skip_trigrams = list(skipgrams(text, n=3, k=2))[('Insurgents', 'killed', 'in'), ('Insurgents', 'killed', 'ongoing'), ('Insurgents', 'killed', 'fighting'), ('Insurgents', 'in', 'ongoing'), ('Insurgents', 'in', 'fighting'), ('Insurgents', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing'), ('killed', 'in', 'fighting'), ('killed', 'ongoing', 'fighting'), ('in', 'ongoing', 'fighting')]
但请注意,如果使用
n+k > len(sequence),它将产生与相同的效果
skipgrams(sequence, n,k-1)(这不是错误,它是故障安全功能),例如
>>> three_skip_trigrams = list(skipgrams(text, n=3, k=3))>>> three_skip_fourgrams = list(skipgrams(text, n=4, k=3))>>> four_skip_fourgrams = list(skipgrams(text, n=4, k=4))>>> four_skip_fivegrams = list(skipgrams(text, n=5, k=4))>>>>>> print len(three_skip_trigrams), three_skip_trigrams10 [('Insurgents', 'killed', 'in'), ('Insurgents', 'killed', 'ongoing'), ('Insurgents', 'killed', 'fighting'), ('Insurgents', 'in', 'ongoing'), ('Insurgents', 'in', 'fighting'), ('Insurgents', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing'), ('killed', 'in', 'fighting'), ('killed', 'ongoing', 'fighting'), ('in', 'ongoing', 'fighting')]>>> print len(three_skip_fourgrams), three_skip_fourgrams 5 [('Insurgents', 'killed', 'in', 'ongoing'), ('Insurgents', 'killed', 'in', 'fighting'), ('Insurgents', 'killed', 'ongoing', 'fighting'), ('Insurgents', 'in', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing', 'fighting')]>>> print len(four_skip_fourgrams), four_skip_fourgrams 5 [('Insurgents', 'killed', 'in', 'ongoing'), ('Insurgents', 'killed', 'in', 'fighting'), ('Insurgents', 'killed', 'ongoing', 'fighting'), ('Insurgents', 'in', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing', 'fighting')]>>> print len(four_skip_fivegrams), four_skip_fivegrams 1 [('Insurgents', 'killed', 'in', 'ongoing', 'fighting')]
这是允许的,
n == k但不允许这样
n > k做,如各行所示:
if n < k: raise Exception("Degree of Ngrams (n) needs to be bigger than skip (k)")
为了理解起见,让我们尝试理解“神秘”这一行:
for idx in list(combinations(range(len(history)), n-1)): pass # Do something
给定唯一项列表,组合会产生以下结果:
>>> from itertools import combinations>>> x = [0,1,2,3,4,5]>>> list(combinations(x,2))[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)]
并且由于令牌列表的索引始终是唯一的,例如
>>> sent = ['this', 'is', 'a', 'foo', 'bar']>>> current_token = sent.pop(0) # i.e. 'this'>>> range(len(sent))[0,1,2,3]
可以计算范围的可能组合(不替换):
>>> n = 3>>> list(combinations(range(len(sent)), n-1))[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
如果我们将索引映射回令牌列表:
>>> [tuple(sent[id] for id in idx) for idx in combinations(range(len(sent)), 2)[('is', 'a'), ('is', 'foo'), ('is', 'bar'), ('a', 'foo'), ('a', 'bar'), ('foo', 'bar')]
然后,将串联起来
current_token,得到当前标记和context + skip窗口的跳过图:
>>> [tuple([current_token]) + tuple(sent[id] for id in idx) for idx in combinations(range(len(sent)), 2)][('this', 'is', 'a'), ('this', 'is', 'foo'), ('this', 'is', 'bar'), ('this', 'a', 'foo'), ('this', 'a', 'bar'), ('this', 'foo', 'bar')]
因此,在此之后,我们继续下一个单词。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)