Python解压缩的相对性能?

Python解压缩的相对性能?,第1张

Python解压缩的相对性能? 您可以使用Python-blosc

它非常快,对于小型阵列(<2GB)也很容易使用。对于像您的示例这样的易于压缩的数据,通常可以更快地压缩数据以进行IO *** 作。(SATA-SSD:大约500
MB / s,PCIe-SSD:最高3500MB / s)在解压缩步骤中,阵列分配是最昂贵的部分。如果图像的形状相似,则可以避免重复分配内存。

对于以下示例,假定使用连续数组。

import bloscimport pickledef compress(arr,Path):    #c = blosc.compress_ptr(arr.__array_interface__['data'][0], arr.size, arr.dtype.itemsize, clevel=3,cname='lz4',shuffle=blosc.SHUFFLE)    c = blosc.compress_ptr(arr.__array_interface__['data'][0], arr.size, arr.dtype.itemsize, clevel=3,cname='zstd',shuffle=blosc.SHUFFLE)    f=open(Path,"wb")    pickle.dump((arr.shape, arr.dtype),f)    f.write(c)    f.close()    return c,arr.shape, arr.dtypedef decompress(Path):    f=open(Path,"rb")    shape,dtype=pickle.load(f)    c=f.read()    #array allocation takes most of the time    arr=np.empty(shape,dtype)    blosc.decompress_ptr(c, arr.__array_interface__['data'][0])    return arr#Pass a preallocated array if you have many similar imagesdef decompress_pre(Path,arr):    f=open(Path,"rb")    shape,dtype=pickle.load(f)    c=f.read()    #array allocation takes most of the time    blosc.decompress_ptr(c, arr.__array_interface__['data'][0])    return arr

基准测试

#blosc.SHUFFLE, cname='zstd' -> 4728KB,  %timeit compress(arr,"Test.dat")1.03 s ± 12.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)#611 MB/s%timeit decompress("Test.dat")146 ms ± 481 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)#4310 MB/s%timeit decompress_pre("Test.dat",arr)50.9 ms ± 438 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)#12362 MB/s#blosc.SHUFFLE, cname='lz4' -> 9118KB, %timeit compress(arr,"Test.dat")32.1 ms ± 437 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)#19602 MB/s%timeit decompress("Test.dat")146 ms ± 332 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)#4310 MB/s%timeit decompress_pre("Test.dat",arr)53.6 ms ± 82.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)#11740 MB/s

时机



欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5646748.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-16
下一篇 2022-12-16

发表评论

登录后才能评论

评论列表(0条)

保存