我终于可以弄清楚如何
multiprocessing在课堂上使用工作了。我使用
pathos.multiprocessing并更改了代码,如下所示:
import numpy as npimport pathos.multiprocessing as multiprocessingclass LikelihoodTest: def __init__(self,Xgal,Ygal): self.x=Xgal self.y=Ygal self.objPosition=gal_pos self.beta_s=beta self.RhoCrit_SigmaC=rho_c_over_sigma_c self.AngularDiameter=DA self.RhoCrit=rho_crit self.Reducedshear=observed_g self.ShearError=g_err #The 2D function def like2d(self,posx, posy): stuff=[self.objPosition, self.beta_s, self.RhoCrit_SigmaC , self.AngularDiameter, self.RhoCrit] m=4.447e14 c=7.16 param=[posx, posy, m, c] return reduced_shear( param, stuff, self.Reducedshear, self.ShearError) def ShearLikelihood(self,r): return [float(self.like2d(self.x[j],r)) for j in range(len(self.x))] def run(self): try: print "processing to estimate likelihood in 2D grids......!!!" start = time.time() pool = multiprocessing.Pool(processes=10) seq=[ self.y[i] for i in range( self.y.shape[0])] results=np.array( pool.map(self.ShearLikelihood, seq )) end = time.time() print "process time:n",end - start pool.close() except ValueError: print "Oops! value error ....!" return results def plotLikelihood(self,shared_array): #plotting on a mesh the likelihood function in order to see whether you have defined the inputs correctly and you can observe the maximum likelihood in 2D # Set up a regular grid of interpolation points xi, yi = np.linspace(self.x.min(), self.x.max(), 100), np.linspace(self.y.min(), self.y.max(), 100) # Interpolate rbf = scipy.interpolate.interp2d(self.x, self.y,shared_array , kind='linear') zi = rbf(xi, yi) fig, ax = plt.subplots() divider = make_axes_locatable(ax) im = ax.imshow(zi, vmin=shared_array.min(), vmax=shared_array.max(), origin='lower', extent=[self.x.min(), self.x.max(), self.y.min(),self.y.max()]) ax.set_xlabel(r"$Xpos$") ax.set_ylabel(r"$Ypos$") ax.xaxis.set_label_position('top') ax.xaxis.set_tick_params(labeltop='on') cax = divider.append_axes("right", size="5%", pad=0.05) cbar = fig.colorbar(im,cax=cax, ticks=list(np.linspace(shared_array.max(), shared_array.min(),20)),format='$%.2f$') cbar.ax.tick_params(labelsize=8)plt.savefig('/users/Desktop/MassRecons/Likelihood2d_XY_coordinate.pdf', transparent=True, bbox_inches='tight', pad_inches=0) plt.close()if __name__ == '__main__': Xgal = np.linspace(Xgalaxy.min(), Xgalaxy.max(), 1000) Ygal = np.linspace(Ygalaxy.min(), Ygalaxy.max(), 1000) Test=LikelihoodTest(Xgal,Ygal) x=Test.run() Test.plotLikelihood(x)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)