在
requestsbug跟踪器上询问了您的问题;
他们的建议是使用流式上传。如果这不起作用,您可能会看到块编码的请求是否有效。
[编辑]
基于原始代码的示例:
# Using `with` here will handle closing the file implicitlywith open(attachment_path, 'rb') as file_to_upload: r = requests.put( "{base}problems/{pid}/{atype}/{path}".format( base=self._baseurl, # It's better to use consistent naming; search PEP-8 for standard Python conventions. pid=problem_id, atype=attachment_type, path=urllib.quote(os.path.basename(attachment_path)), ), headers=headers, # Note that you're passing the file object, NOT the contents of the file: data=file_to_upload, # Hard to say whether this is a good idea with a large file upload timeout=300, )
我不能保证它会按原样运行,因为我无法实际测试它,但是它应该很接近。我链接到的错误跟踪器注释还提到,发送多个标头可能会导致问题,因此,如果实际上指定的标头是必需的,则此方法可能无效。
关于块编码:这应该是您的第二选择。您的代码未指定
'rb'为的模式
open(...),因此更改该模式可能应使上述代码正常工作。如果没有,您可以尝试一下。
def read_in_chunks(): # If you're going to chunk anyway, doesn't it seem like smaller ones than this would be a good idea? chunk_size = 30720 * 30720 # I don't know how correct this is; if it doesn't work as expected, you'll need to debug with open(attachment_path, 'rb') as file_object: while True: data = file_object.read(chunk_size) if not data: break yield data# Same request as above, just using the function to chunk explicitly; see the `data` paramr = requests.put( "{base}problems/{pid}/{atype}/{path}".format( base=self._baseurl, pid=problem_id, atype=attachment_type, path=urllib.quote(os.path.basename(attachment_path)), ), headers=headers, # Call the chunk function here and the request will be chunked as you specify data=read_in_chunks(), timeout=300,)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)