基于opencv的SIFT影像配准,针对大影像,防止爆内存,进行了分块处理;使用RANSAC算法去除误匹配(python&c++)

基于opencv的SIFT影像配准,针对大影像,防止爆内存,进行了分块处理;使用RANSAC算法去除误匹配(python&c++),第1张

基于opencv的SIFT影像配准,针对大影像,防止爆内存,进行了分块处理;使用RANSAC算法去除误匹配(python&c++)

先看效果(单映矩阵对一张影像不同平面好像不太一样):

原图——>配准后叠加----------------------------------------------------------------------------------------------------

原始同名点------------------------------------------------------------------------------------------------------------------

 剔除误匹配后同名点-----------------------------------------------------------------------------------------------------

   源码-python:

numpy == 1.21.4

opencv-python == 4.5.4.58

opencv-contrib-python == 4.5.4.60

# function: image regrestion
# author: yangzhen
# time: 2020.7.29
import numpy as np
import cv2
import random


def GetSamePoints(img1, img2, patchheight=2000, patchwidth=2000):
    """
       使用SIFT算法获取同名点
       @img1 第一张影像
       @img2 第二张影像
       @return p1、p2分别为两张影像上点
       ps: 当两张影像过大时会进行分块
    """
    # 初始化sift
    # sift = cv2.xfeatures2d.SIFT_create(600)
    sift = cv2.SIFT_create(600)
    # 判断是否需要分块
    rows, cols = img1.shape[0:2]
    rownum = (1 if rows <= patchheight else rows // patchheight)
    colnum = (1 if cols <= patchwidth else cols // patchwidth)
    # 根据分块结果进行同名点匹配
    p1 = np.empty([0, 1, 2], dtype=np.float32)
    p2 = np.empty([0, 1, 2], dtype=np.float32)
    # 测试
    # badp1 = np.empty([0, 1, 2], dtype=np.float32)
    # badp2 = np.empty([0, 1, 2], dtype=np.float32)
    for i in range(rownum):
        for j in range(colnum):
            # 获取分块影像
            mimg1 = img1[i*patchheight:(i+1)*patchheight,
                         j*patchwidth:(j+1)*patchwidth]
            mimg2 = img2[i*patchheight:(i+1)*patchheight,
                         j*patchwidth:(j+1)*patchwidth]
            timg = np.r_[mimg1, mimg2]
            # 测试分块重叠区域是否足够
            # cv2.namedWindow('test', 0)
            # cv2.imshow('test', timg)
            # cv2.waitKey()
            # 提取特征点
            kp1, des1 = sift.detectAndCompute(mimg1, None)
            kp2, des2 = sift.detectAndCompute(mimg2, None)
            # 匹配
            bf = cv2.BFMatcher()
            matches = bf.knnMatch(des1, des2, k=2)
            # 剔除误匹配
            tp1 = np.float32([kp1[m[0].queryIdx].pt
                             for m in matches]).reshape(-1, 1, 2)
            tp2 = np.float32([kp2[m[0].trainIdx].pt
                              for m in matches]).reshape(-1, 1, 2)  
            M, mask = cv2.findHomography(tp1, tp2, cv2.RANSAC, 0.1)
            matchmask = mask.ravel().tolist()
            pnum = matchmask.count(1)
            mp1 = np.zeros([pnum, 1, 2], dtype=np.float32)
            mp2 = np.zeros([pnum, 1, 2], dtype=np.float32)
            iter = 0
            # 剔除误匹配的同时恢复分块点坐标至原影像
            for k in range(len(matchmask)):
                if matchmask[k] == 1:
                    mp1[iter, 0, 0] = tp1[k, 0, 0] + j*patchwidth
                    mp1[iter, 0, 1] = tp1[k, 0, 1] + i*patchheight
                    mp2[iter, 0, 0] = tp2[k, 0, 0] + j*patchwidth
                    mp2[iter, 0, 1] = tp2[k, 0, 1] + i*patchheight
                    iter = iter + 1
            # 将每一块的同名点放到一起
            p1 = np.vstack((p1, mp1))
            p2 = np.vstack((p2, mp2))
            # 测试
    #         mbadp1 = tp1 + j*patchwidth
    #         mbadp2 = tp2 + i*patchheight
    #         badp1 = np.vstack((badp1, mbadp1))
    #         badp2 = np.vstack((badp2, mbadp2))
    # drawImg = DrawSamePoint(img1, img2, badp1, badp2)
    # cv2.imwrite('data/samepoints_bad.jpg', drawImg)
    return p1, p2



def DrawSamePoint(img1, img2, p1, p2):
    """绘制同名点"""
    hA, wA = img1.shape[0:2]
    hB, wB = img2.shape[0:2]
    # 注意这里的3通道和uint8类型
    drawImg = np.zeros((max(hA, hB), wA + wB, 3), 'uint8')
    drawImg[0:hB, 0:wB] = img1
    drawImg[0:hA, wB:] = img2
    for i in range(len(p1)):
        # 注意将float32 --> int
        pt1 = (int(p1[i][0][0]), int(p1[i][0][1]))
        pt2 = (int(p2[i][0][0]) + wB, int(p2[i][0][1]))
        # 产生随机颜色
        r = int(random.random()*255)
        g = int(random.random()*255)
        b = int(random.random()*255)
        # 绘制
        cv2.circle(drawImg, pt1, 24, (r, g, b), 4)
        cv2.circle(drawImg, pt2, 24, (r, g, b), 4)
        cv2.line(drawImg, pt1, pt2, (r, g, b), 4)
    return drawImg


if __name__ == "__main__":
    # 获取数据
    img1 = cv2.imread('data/img1.jpg')
    img2 = cv2.imread('data/img2.jpg')
    # print(img1.shape)
    # 获取同名点
    p1, p2 = GetSamePoints(img1, img2, 4000, 4000)
    # 绘制同名点
    drawImg = DrawSamePoint(img1, img2, p1, p2)
    # 配准
    T, useless = cv2.findHomography(p2, p1, cv2.RANSAC, 0.1)
    nimg2 = cv2.warpPerspective(img2, T, (img1.shape[1], img1.shape[0]))
    # 保存影像
    cv2.imwrite('data/samepoints.jpg', drawImg)
    cv2.imwrite('data/result.jpg', nimg2)

  源码-c++:

void SIFTRegistration(const Mat img1, const Mat img2, 
                      vector &p1, vector &p2,
                      const int PatchHeight = 2000,
                      const int PatchWidth = 2000)
{
    //分块提取关键点
    int rows = img1.rows;
    int cols = img1.cols;
    //块的数目
    const int RowNum = rows / PatchHeight;
    const int ColNum = cols / PatchWidth;
    //对每个块探测关键点与描述并进行匹配与误匹配剔除
    for (int i(0); i < RowNum; ++i)
    {
        for (int j(0); j < ColNum; ++j)
        {
            //获取对应块影像
            Rect rect(j * PatchWidth, i * PatchHeight,
                PatchWidth, PatchHeight);
            Mat mimg1 = Mat(img1, rect);
            Mat mimg2 = Mat(img2, rect);
            //SIFT关键点探测
            Ptr f2d = xfeatures2d::SIFT::create(100, 1);
            //关键点
            vector keypoints1;
            vector keypoints2;
            //关键点描述
            Mat descriptions1;
            Mat descriptions2;
            //探测
            f2d->detectAndCompute(mimg1, Mat(), keypoints1, descriptions1);
            f2d->detectAndCompute(mimg2, Mat(), keypoints2, descriptions2);
            //硬匹配
            BFMatcher matcher;
            vector matches;
            matcher.match(descriptions1, descriptions2, matches);
            //RANSAC算法剔除误匹配
            vector GoodMatches = matches;
            vector RAN_KP1, RAN_KP2;
            for (int j(0); j < GoodMatches.size(); ++j)
            {
                RAN_KP1.push_back(keypoints1[matches[j].queryIdx]);
                RAN_KP2.push_back(keypoints2[matches[j].trainIdx]);
            }
            //坐标数据类型变换
            vector p01, p02;
            for (int j(0); j < GoodMatches.size(); ++j)
            {
                p01.push_back(RAN_KP1[j].pt);
                p02.push_back(RAN_KP2[j].pt);
            }
            //RANSAC过程
            vector RansacStatus;
            Mat Fundamental = findFundamentalMat(p01, p02, RansacStatus, FM_RANSAC);
            int iter = 0;
            for (int j(0); j < matches.size(); ++j)
            {
                if (RansacStatus[j] == 0)
                    GoodMatches.erase(GoodMatches.begin() + iter);
                else
                    iter++;
            }
            //保存同名点并恢复原图坐标
            for (int k(0); k < GoodMatches.size(); ++k)
            {
                Point2f tp1, tp2;
                tp1.x = keypoints1[ GoodMatches[k].queryIdx ].pt.x + j * PatchWidth;
                tp1.y = keypoints1[ GoodMatches[k].queryIdx ].pt.y + i * PatchHeight;
                tp2.x = keypoints2[ GoodMatches[k].trainIdx ].pt.x + j * PatchWidth;
                tp2.y = keypoints2[ GoodMatches[k].trainIdx ].pt.y + i * PatchHeight;
                p1.push_back(tp1);
                p2.push_back(tp2);
            }
        }
    }
}

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5665869.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-16
下一篇 2022-12-16

发表评论

登录后才能评论

评论列表(0条)

保存