在用darknet训练voc数据集时,需要将xml格式的标签转换为txt格式的标签。
同时,用自定义数据集在darknet中进行训练时,如遇到xml格式转txt格式的问题,也可用本文方法。
废话不多,开始介绍。
- 新建文件夹VOCdevkit,文件结构为:
├── gen_files.py └── VOCdevkit └── VOC2007 ├── Annotations ├── ImageSets ├── JPEGImages └── labels
按照以上结构来建文件夹,并保持名字与上一致。
Annotations用来存放xml格式的标注文件;
JPEGImages存放图片数据集;
labels存放转换后的txt标注文件,目前是空文件夹。
- 将gen_files.py放至与VOCdevkit文件夹同级目录,代码内容如下:
import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join import random classes=["class1","class2"] def clear_hidden_files(path): dir_list = os.listdir(path) for i in dir_list: abspath = os.path.join(os.path.abspath(path), i) if os.path.isfile(abspath): if i.startswith("._"): os.remove(abspath) else: clear_hidden_files(abspath) def convert(size, box): dw = 1./size[0] dh = 1./size[1] x = (box[0] + box[1])/2.0 y = (box[2] + box[3])/2.0 w = box[1] - box[0] h = box[3] - box[2] x = x*dw w = w*dw y = y*dh h = h*dh return (x,y,w,h) def convert_annotation(image_id): in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' %image_id) out_file = open('VOCdevkit/VOC2007/labels/%s.txt' %image_id, 'w') tree=ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w,h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + 'n') in_file.close() out_file.close() wd = os.getcwd() wd = os.getcwd() work_sapce_dir = os.path.join(wd, "VOCdevkit/") if not os.path.isdir(work_sapce_dir): os.mkdir(work_sapce_dir) work_sapce_dir = os.path.join(work_sapce_dir, "VOC2007/") if not os.path.isdir(work_sapce_dir): os.mkdir(work_sapce_dir) annotation_dir = os.path.join(work_sapce_dir, "Annotations/") if not os.path.isdir(annotation_dir): os.mkdir(annotation_dir) clear_hidden_files(annotation_dir) image_dir = os.path.join(work_sapce_dir, "JPEGImages/") if not os.path.isdir(image_dir): os.mkdir(image_dir) clear_hidden_files(image_dir) VOC_file_dir = os.path.join(work_sapce_dir, "ImageSets/") if not os.path.isdir(VOC_file_dir): os.mkdir(VOC_file_dir) VOC_file_dir = os.path.join(VOC_file_dir, "Main/") if not os.path.isdir(VOC_file_dir): os.mkdir(VOC_file_dir) train_file = open(os.path.join(wd, "2007_train.txt"), 'w') test_file = open(os.path.join(wd, "2007_test.txt"), 'w') train_file.close() test_file.close() VOC_train_file = open(os.path.join(work_sapce_dir, "ImageSets/Main/train.txt"), 'w') VOC_test_file = open(os.path.join(work_sapce_dir, "ImageSets/Main/test.txt"), 'w') VOC_train_file.close() VOC_test_file.close() if not os.path.exists('VOCdevkit/VOC2007/labels'): os.makedirs('VOCdevkit/VOC2007/labels') train_file = open(os.path.join(wd, "2007_train.txt"), 'a') test_file = open(os.path.join(wd, "2007_test.txt"), 'a') VOC_train_file = open(os.path.join(work_sapce_dir, "ImageSets/Main/train.txt"), 'a') VOC_test_file = open(os.path.join(work_sapce_dir, "ImageSets/Main/test.txt"), 'a') list = os.listdir(image_dir) # list image files probo = random.randint(1, 100) print("Probobility: %d" % probo) for i in range(0,len(list)): path = os.path.join(image_dir,list[i]) if os.path.isfile(path): image_path = image_dir + list[i] voc_path = list[i] (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path)) (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path)) annotation_name = nameWithoutExtention + '.xml' annotation_path = os.path.join(annotation_dir, annotation_name) probo = random.randint(1, 100) print("Probobility: %d" % probo) if(probo < 75): if os.path.exists(annotation_path): train_file.write(image_path + 'n') VOC_train_file.write(voc_nameWithoutExtention + 'n') convert_annotation(nameWithoutExtention) else: if os.path.exists(annotation_path): test_file.write(image_path + 'n') VOC_test_file.write(voc_nameWithoutExtention + 'n') convert_annotation(nameWithoutExtention) train_file.close() test_file.close() VOC_train_file.close() VOC_test_file.close()
- 将classes=["class1","class2"]改成你要转换的数据集对应的类别即可(注意类别顺序),其他的默认即可。
- 运行gen_files.py,之后会在labels文件夹生成转换成功的txt文件,同时会在根目录下生成train.txt test.txt。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)