20211226

20211226,第1张

2021/12/26

hdfs dfs -mkdir -p /app/data/allprovinces

hdfs dfs -mkdir -p /app/data/events/products

hdfs dfs -put /opt/data/allprovinces.txt /app/data/allprovinces

hdfs dfs -put /opt/data/products.txt /app/data/allprovinces

hdfs dfs -mv /app/data/allprovinces/products.txt /app/data/events/products/

create_namespace ‘market’

create ‘market:province_market’,‘market’,‘info’

drop database if exists market

create database market

create external table market.ex_allprovinces(

name string,

abbr string

)

row format delimited fields terminated by ‘t’

location ‘/app/data/allprovinces’

create external table market.ex_products(

name string,

price double,

craw_time string,

market string,

province string,

city string

)

row format delimited fields terminated by ‘t’

location ‘/app/data/events/products’

数据导入成功,查询结果如下图

映射hive到hbase

CREATE external TABLE market.ex_province_market(

abbr string,

market_count int,

province_name string

)

STORED BY ‘org.apache.hadoop.hive.hbase.HbaseStorageHandler’

WITH SERDEPROPERTIES (“hbase.columns.mapping” = “:key,market:market_count,info:province_name”)

TBLPROPERTIES (“hbase.table.name” = “market:province_market”)

*统计每个省份的农产品市场总数,并将每个省份的市场数量保存到* *Hbase* *的*

*province_market* *表中(如该省无农产品市场,则数量为* *0********)。其中* *RowKey* *使用省*

*份名称的英文缩写(来自于* *allprovinces.txt********),市场数量保存在* *market* *列族下*

*的* *count* *列中,省份名称保存在* *info* *列族下的* *name* *列中。*

代码:

insert into market.ex_province_market

select ap.abbr abbr,nvl(p.cnt,0) market_count,ap.name province_name from market.ex_allprovinces ap left join (

select province,count(distinct market) cnt from market.ex_products where trim(province)!=’’ group by province

) p on ap.name=p.province

Hive查询结果:

Hbase查询结果:

①根据农产品类型数量,统计排名前 3 名的省份

代码复制:

val conf = new SparkConf().setAppName(“exam”).setMaster(“local[*]”)

val sc = new SparkContext(conf)

val rdd: RDD[String] = sc.textFile(“hdfs://192.168.10.141:9000/app/data/events/products/products.txt”)

rdd.map(x=>{

val info: Array[String] = x.split("t",-1)

//((省份,农产品名称),1)

((info(4),info(0)),1)

}).filter(_._1._1!="")

.groupByKey()

.map(_._1)

.groupByKey()

.mapValues(_.size)

.map(x=>(1,x))

.groupByKey()

.map(_.2.toList.sortBy(-._2).take(3))

.foreach(println)

结果截图:

②根据农产品类型数量,统计每个省份排名前 3 名的农产品市场。

代码复制:

rdd.map(x=>{
val info: Array[String] = x.split("t",-1)
//((省份,市场名,农产品名称),1)
((info(4),info(3),info(0)),1)
}).filter(_._1._1!="")
.groupByKey()
.map(x=>{
((x._1._1,x._1._2),x._1._3)
}).groupByKey()
.map(x=>{
(x._1._1,(x._1._2,x._2.size))
}).groupByKey()
.map(x=>{
(x._1,x.2.toList.sortBy(-._2).take(3))
})
.foreach(println)

结果截图:

题目:在 Spark-Shell 中,将 products.txt 装载成 Dataframe,计算山西省每种农产 品的价格波动趋势,即计算每天价格均值,并将结果输出到控制台上。

代码:val spark = SparkSession.builder().master(“local[*]”).appName(“examspark”)
.getOrCreate()
import spark.implicits._
val df: Dataframe = spark.read.format(“text”)

.load(“hdfs://192.168.10.141:9000/app/data/events/products/products.txt”).map(x=>{
val info = x.toString()
.replaceAll("[","")
.replaceAll("]","")
.split("t",-1)
(info(0),info(1),info(2),info(3),info(4),info(5))
}).toDF(“name”,“price”,“craw_time”,“market”,“province”,“city”)

df.where(“trim(province)=‘山西’”)

.groupBy(“province”,“name”,“craw_time”)

.agg(sum(“price”).as(“sumprice”)

,count(“price”).as(“cnt”)

,max(“price”).as(“maxprice”)

,min(“price”).as(“minprice”))

.withColumn(“pavg”,when( " c n t " > 2 , ( "cnt">2,( "cnt">2,(“sumprice”- " m a x p r i c e " − "maxprice"- "maxprice"−“minprice”)/( " c n t " − 2 ) ) . o t h e r w i s e ( "cnt"-2)).otherwise( "cnt"−2)).otherwise(“sumprice”/$“cnt”))

.select(“province”,“name”,“craw_time”,“pavg”)

.show()

结果截图:

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5689065.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-17
下一篇 2022-12-17

发表评论

登录后才能评论

评论列表(0条)

保存