OpenCV C++案例实战二十《yhk号识别》

OpenCV C++案例实战二十《yhk号识别》,第1张

OpenCV C++案例实战二十《yhk号识别》

OpenCV C++案例实战二十《yhk号识别》

前言一、获取模板图像

1.1 功能效果1.2 功能源码 二、yhk号定位

2.1 将yhk号切割成四块

2.1.1 功能效果2.1.2 功能源码 2.2 字符切割

2.2.1 功能效果2.2.2 功能源码 三、字符识别

3.1.读取文件3.2.字符匹配3.3.功能源码 四、效果显示

4.1 功能源码4.2 效果显示 五、源码

5.1 hpp文件5.2 cpp文件5.3 main文件 总结


前言

本文将使用OpenCV C++ 进行yhk号识别。主要步骤可以细分为:
1、 获取模板图像
2、yhk号区域定位
3、字符切割
4、模板匹配
5、效果显示
接下来就具体看看是如何一步步实现的吧。

一、获取模板图像


如图所示,这是我们的模板图像。我们需要将上面的字符一一切割出来保存,以便进行后续的字符匹配环节。先进行图像灰度、阈值等 *** 作进行轮廓提取,这里就不再细说。这里我想说的是,由于经过轮廓检索,提取出来的字符并不是按(0、1、2…7、8、9)顺序排列,所以,在这里我自定义了一个Card结构体,用于图像排序。具体请看源码。

1.1 功能效果


如图为顺序切割出来的模板字符。

1.2 功能源码
bool Get_Template(Mat temp, vector&Card_Temp)
{
	//图像预处理
	Mat gray;
	cvtColor(temp, gray, COLOR_BGR2GRAY);

	Mat thresh;
	threshold(gray, thresh, 0, 255, THRESH_BINARY_INV|THRESH_OTSU);

	//轮廓检测
	vector > contours;
	findContours(thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	for (int i = 0; i < contours.size(); i++)
	{
		Rect rect = boundingRect(contours[i]);

		double ratio = double(rect.width) / double(rect.height);
		//筛选出字符轮廓
		if (ratio > 0.5 && ratio < 1)
		{
			
			Mat roi = temp(rect);  //将字符扣出,放入Card_Temp容器备用
			Card_Temp.push_back({ roi ,rect });
		}
	}

	if (Card_Temp.empty())return false;

	//进行字符排序,使其按(0、1、2...7、8、9)顺序排序
	for (int i = 0; i < Card_Temp.size()-1; i++)
	{
		for (int j = 0; j < Card_Temp.size() - 1 - i; j++)
		{
			if (Card_Temp[j].rect.x > Card_Temp[j + 1].rect.x)
			{
				Card temp = Card_Temp[j];
				Card_Temp[j] = Card_Temp[j + 1];
				Card_Temp[j + 1] = temp;
			}
		}
	}

	return true;
}
二、yhk号定位


如图所示,这是本案例需要识别的yhk。从图中可以看出,我们需要将yhk号切割出来首先得将卡号分为4个小块切割,之后再需要将每一小块上的字符切割。接下来一步步看是如何 *** 作的。

2.1 将yhk号切割成四块

首先第一步得先进行图像预处理,通过灰度、二值化、形态学等 *** 作提取出卡号轮廓。这里的图像预处理需要根据图像特征自行确定,并不是所有的步骤都是必须的,我们最终的目的是为了定位yhk号所在轮廓位置。这里我使用的是二值化、以及形态学闭 *** 作。

	//形态学 *** 作、以便找到yhk号区域轮廓
	Mat gray;
	cvtColor(src, gray, COLOR_BGR2GRAY);

	Mat gaussian;
	GaussianBlur(gray, gaussian, Size(3, 3), 0);

	Mat thresh;
	threshold(gaussian, thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);

	Mat close;
	Mat kernel2 = getStructuringElement(MORPH_RECT, Size(15, 5));
	morphologyEx(thresh, close, MORPH_CLOSE, kernel2);

经过灰度、阈值、形态学 *** 作后的图像如下图所示。我们已经将yhk号分为四个小矩形块,接下来只需通过轮廓查找、筛选就可以扣出这四个ROI区域了。

	vector>contours;
	findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	for (int i = 0; i < contours.size(); i++)
	{
		//通过面积、长宽比筛选出银行卡号区域
		double area = contourArea(contours[i]);

		if (area > 800 && area < 1400)
		{
			Rect rect = boundingRect(contours[i]);
			float ratio = double(rect.width) / double(rect.height);

			if (ratio > 2.8 && ratio < 3.1)
			{
				Mat ROI = src(rect);
				Block_ROI.push_back({ ROI ,rect });
			}
		}
	}


同理,我们需要将切割下来的小块按照它原来的顺序存储。

	for (int i = 0; i < Block_ROI.size()-1; i++)
	{
		for (int j = 0; j < Block_ROI.size() - 1 - i; j++)
		{
			if (Block_ROI[j].rect.x > Block_ROI[j + 1].rect.x)
			{
				Card temp = Block_ROI[j];
				Block_ROI[j] = Block_ROI[j + 1];
				Block_ROI[j + 1] = temp;
			}
		}
	}
2.1.1 功能效果

2.1.2 功能源码
bool Cut_Block(Mat src, vector&Block_ROI)
{
	//形态学 *** 作、以便找到yhk号区域轮廓
	Mat gray;
	cvtColor(src, gray, COLOR_BGR2GRAY);

	Mat gaussian;
	GaussianBlur(gray, gaussian, Size(3, 3), 0);

	Mat thresh;
	threshold(gaussian, thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);

	Mat close;
	Mat kernel2 = getStructuringElement(MORPH_RECT, Size(15, 5));
	morphologyEx(thresh, close, MORPH_CLOSE, kernel2);

	vector>contours;
	findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	for (int i = 0; i < contours.size(); i++)
	{
		//通过面积、长宽比筛选出银行卡号区域
		double area = contourArea(contours[i]);

		if (area > 800 && area < 1400)
		{
			Rect rect = boundingRect(contours[i]);
			float ratio = double(rect.width) / double(rect.height);

			if (ratio > 2.8 && ratio < 3.1)
			{
				//rectangle(src, rect, Scalar(0, 255, 0), 2);
				Mat ROI = src(rect);
				Block_ROI.push_back({ ROI ,rect });
			}
		}
	}
	
	if (Block_ROI.size()!=4)return false;

	for (int i = 0; i < Block_ROI.size()-1; i++)
	{
		for (int j = 0; j < Block_ROI.size() - 1 - i; j++)
		{
			if (Block_ROI[j].rect.x > Block_ROI[j + 1].rect.x)
			{
				Card temp = Block_ROI[j];
				Block_ROI[j] = Block_ROI[j + 1];
				Block_ROI[j + 1] = temp;
			}
		}
	}

	//for (int i = 0; i < Block_ROI.size(); i++)
	//{
	//	imshow(to_string(i), Block_ROI[i].mat);
	//	waitKey(0);
	//}

	return true;
}
2.2 字符切割

由步骤2.1,我们已经将yhk号定位,且顺序切割成四个小块。接下来,我们只需要将他们依次的将字符切割下来就可以了。其实切割字符跟上面的切割小方块是差不多的,这里就不再多说了。在这里我着重要说明的是,切割出来的字符相对于yhk所在位置。

由步骤2.1,我们顺序切割出来四个小方块。以其中一个小方块为例,当时我们存储了rect变量,它表示该小方块相对于图像起点(X,Y),宽W,高H。而步骤2.2我们需要做的就是将这个小方块的字符切割出来,那么每一个字符相对于小方块所在位置为起点(x,y),宽w,高h。所以,这些字符相当于yhk所在位置就是起点(X+x,Y+y),宽 (w),高(h)。具体请细看源码。也比较简单容易理解。

	//循环上面切割出来的四个小块,将上面的字符一一切割出来。
	for (int i = 0; i < Block_ROI.size(); i++)
	{
		Mat roi_gray;
		cvtColor(Block_ROI[i].mat, roi_gray, COLOR_BGR2GRAY);

		Mat roi_thresh;
		threshold(roi_gray, roi_thresh, 0, 255, THRESH_BINARY|THRESH_OTSU);

		vector > contours;
		findContours(roi_thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
		for (int j = 0; j < contours.size(); j++)
		{
			Rect rect = boundingRect(contours[j]);
			//字符相对于银行卡所在的位置
			Rect roi_rect(rect.x + Block_ROI[i].rect.x, rect.y + Block_ROI[i].rect.y, rect.width, rect.height);	
			Mat r_roi = Block_ROI[i].mat(rect);
			Slice_ROI.push_back({ r_roi ,roi_rect });		
		}
	}

同样,在这里我们也需要将切割出来的字符顺序排序。即yhk上的号码是怎样排序的,我们就需要怎样排序保存

	for (int i = 0; i < Slice_ROI.size() - 1; i++)
	{
		for (int j = 0; j < Slice_ROI.size() - 1 - i; j++)
		{
			if (Slice_ROI[j].rect.x > Slice_ROI[j + 1].rect.x)
			{
				Card temp = Slice_ROI[j];
				Slice_ROI[j] = Slice_ROI[j + 1];
				Slice_ROI[j + 1] = temp;
			}
		}
	}
2.2.1 功能效果


如图为顺序切割出来的字符

2.2.2 功能源码
bool Cut_Slice(vector&Block_ROI,vector&Slice_ROI)
{
	//循环上面切割出来的四个小块,将上面的字符一一切割出来。
	for (int i = 0; i < Block_ROI.size(); i++)
	{
		Mat roi_gray;
		cvtColor(Block_ROI[i].mat, roi_gray, COLOR_BGR2GRAY);

		Mat roi_thresh;
		threshold(roi_gray, roi_thresh, 0, 255, THRESH_BINARY|THRESH_OTSU);

		vector > contours;
		findContours(roi_thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
		for (int j = 0; j < contours.size(); j++)
		{
			Rect rect = boundingRect(contours[j]);
			//字符相对于银行卡所在的位置
			Rect roi_rect(rect.x + Block_ROI[i].rect.x, rect.y + Block_ROI[i].rect.y, rect.width, rect.height);	
			Mat r_roi = Block_ROI[i].mat(rect);
			Slice_ROI.push_back({ r_roi ,roi_rect });		
		}
	}

	if (Slice_ROI.size() != 16) return false;

	for (int i = 0; i < Slice_ROI.size() - 1; i++)
	{
		for (int j = 0; j < Slice_ROI.size() - 1 - i; j++)
		{
			if (Slice_ROI[j].rect.x > Slice_ROI[j + 1].rect.x)
			{
				Card temp = Slice_ROI[j];
				Slice_ROI[j] = Slice_ROI[j + 1];
				Slice_ROI[j + 1] = temp;
			}
		}
	}

	//for (int i = 0; i < Slice_ROI.size(); i++)
	//{
	//	imshow(to_string(i), Slice_ROI[i].mat);
	//	waitKey(0);
	//}

	return true;
}
三、字符识别 3.1.读取文件


如图所示,为模板图像对应的label。我们需要读取文件,进行匹配。

bool ReadData(string filename, vector&label)
{
	fstream fin;
	fin.open(filename, ios::in);
	if (!fin.is_open())
	{
		cout << "can not open the file!" << endl;
		return false;
	}

	int data[10] = { 0 };
	for (int i = 0; i < 10; i++)
	{
		fin >> data[i];
	}
	fin.close();

	for (int i = 0; i < 10; i++)
	{
		label.push_back(data[i]);
	}
	return true;
}
3.2.字符匹配

在这里,我的思路是:使用一个for循环,将我们切割出来的字符与现有的模板一一进行匹配。使用的算法是图像模板匹配matchTemplate。具体用法请大家自行查找相关资料。具体请看源码

3.3.功能源码
bool Template_Matching(vector&Card_Temp,
	vector&Block_ROI, vector&Slice_ROI,
	vector&result_index)
{
	for (int i = 0; i < Slice_ROI.size(); i++)
	{
		//将字符resize成合适大小,利于识别
		resize(Slice_ROI[i].mat, Slice_ROI[i].mat, Size(60, 80), 1, 1, INTER_LINEAR);

		Mat gray;
		cvtColor(Slice_ROI[i].mat, gray, COLOR_BGR2GRAY);

		int maxIndex = 0;
		double Max = 0.0;
		for (int j = 0; j < Card_Temp.size(); j++)
		{		
			resize(Card_Temp[j].mat, Card_Temp[j].mat, Size(60, 80), 1, 1, INTER_LINEAR);

			Mat temp_gray;
			cvtColor(Card_Temp[j].mat, temp_gray, COLOR_BGR2GRAY);

			//进行模板匹配,识别数字
			Mat result;
			matchTemplate(gray, temp_gray, result, TM_SQDIFF_NORMED);
			double minVal, maxVal;
			Point minLoc, maxLoc;

			minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);
			
			//得分最大的视为匹配结果
			if (maxVal > Max)
			{
				Max = maxVal;
				maxIndex = j; //匹配结果
			}
		}

		result_index.push_back(maxIndex);//将匹配结果进行保存
	}

	if (result_index.size() != 16)return false;

	return true;
}
四、效果显示 4.1 功能源码
bool Show_Result(Mat src, 
	vector&Block_ROI,
	vector&Slice_ROI, 
	vector&result_index)
{
	//读取label标签
	vectorlabel;
	if (!ReadData("label.txt", label))return false;

	//将匹配结果进行显示
	for (int i = 0; i < Block_ROI.size(); i++)
	{
		rectangle(src, Rect(Block_ROI[i].rect.tl(), Block_ROI[i].rect.br()), Scalar(0, 255, 0), 2);
	}
	for (int i = 0; i < Slice_ROI.size(); i++)
	{
		cout << label[result_index[i]] << " ";
		putText(src, to_string(label[result_index[i]]), Point(Slice_ROI[i].rect.tl()), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
	}

	imshow("Demo", src);
	waitKey(0);
	destroyAllWindows();

	return true;
}
4.2 效果显示



如图所示,为本案例最终的效果展示。

五、源码 5.1 hpp文件
#pragma once
#include
#include

struct Card
{
	cv::Mat mat;
	cv::Rect rect;
};

//获取模板图像
bool Get_Template(cv::Mat temp, std::vector&Card_Temp);

//将yhk卡号部分切成四块
bool Cut_Block(cv::Mat src, std::vector&Block_ROI);

//将每一块数字区域切分出单独数字
bool Cut_Slice(std::vector&Block_ROI, std::vector&Slice_ROI);

//将数字与模板进行模板匹配
bool Template_Matching(std::vector&Card_Temp, 
	std::vector&Block_ROI,
	std::vector&Slice_ROI,
	std::vector&result_index);

//显示最终结果
bool Show_Result(cv::Mat src,
	std::vector&Block_ROI, 
	std::vector&Slice_ROI,
	std::vector&result_index);

5.2 cpp文件
#include
#include"CardDectection.h"
#include
using namespace std;
using namespace cv;


bool Get_Template(Mat temp, vector&Card_Temp)
{
	//图像预处理
	Mat gray;
	cvtColor(temp, gray, COLOR_BGR2GRAY);

	Mat thresh;
	threshold(gray, thresh, 0, 255, THRESH_BINARY_INV|THRESH_OTSU);

	//轮廓检测
	vector > contours;
	findContours(thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	for (int i = 0; i < contours.size(); i++)
	{
		Rect rect = boundingRect(contours[i]);

		double ratio = double(rect.width) / double(rect.height);
		//筛选出字符轮廓
		if (ratio > 0.5 && ratio < 1)
		{
			
			Mat roi = temp(rect);  //将字符扣出,放入Card_Temp容器备用
			Card_Temp.push_back({ roi ,rect });
		}
	}

	if (Card_Temp.empty())return false;

	//进行字符排序,使其按(0、1、2...7、8、9)顺序排序
	for (int i = 0; i < Card_Temp.size()-1; i++)
	{
		for (int j = 0; j < Card_Temp.size() - 1 - i; j++)
		{
			if (Card_Temp[j].rect.x > Card_Temp[j + 1].rect.x)
			{
				Card temp = Card_Temp[j];
				Card_Temp[j] = Card_Temp[j + 1];
				Card_Temp[j + 1] = temp;
			}
		}
	}

	//for (int i = 0; i < Card_Temp.size(); i++)
	//{
	//	imshow(to_string(i), Card_Temp[i].mat);
	//	waitKey(0);
	//}

	return true;
}



bool Cut_Block(Mat src, vector&Block_ROI)
{
	//形态学 *** 作、以便找到yhk号区域轮廓
	Mat gray;
	cvtColor(src, gray, COLOR_BGR2GRAY);

	Mat gaussian;
	GaussianBlur(gray, gaussian, Size(3, 3), 0);

	Mat thresh;
	threshold(gaussian, thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);

	Mat close;
	Mat kernel2 = getStructuringElement(MORPH_RECT, Size(15, 5));
	morphologyEx(thresh, close, MORPH_CLOSE, kernel2);

	vector>contours;
	findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	for (int i = 0; i < contours.size(); i++)
	{
		//通过面积、长宽比筛选出银行卡号区域
		double area = contourArea(contours[i]);

		if (area > 800 && area < 1400)
		{
			Rect rect = boundingRect(contours[i]);
			float ratio = double(rect.width) / double(rect.height);

			if (ratio > 2.8 && ratio < 3.1)
			{
				//rectangle(src, rect, Scalar(0, 255, 0), 2);
				Mat ROI = src(rect);
				Block_ROI.push_back({ ROI ,rect });
			}
		}
	}
	
	if (Block_ROI.size()!=4)return false;

	for (int i = 0; i < Block_ROI.size()-1; i++)
	{
		for (int j = 0; j < Block_ROI.size() - 1 - i; j++)
		{
			if (Block_ROI[j].rect.x > Block_ROI[j + 1].rect.x)
			{
				Card temp = Block_ROI[j];
				Block_ROI[j] = Block_ROI[j + 1];
				Block_ROI[j + 1] = temp;
			}
		}
	}

	//for (int i = 0; i < Block_ROI.size(); i++)
	//{
	//	imshow(to_string(i), Block_ROI[i].mat);
	//	waitKey(0);
	//}

	return true;
}


bool Cut_Slice(vector&Block_ROI,vector&Slice_ROI)
{
	//循环上面切割出来的四个小块,将上面的字符一一切割出来。
	for (int i = 0; i < Block_ROI.size(); i++)
	{
		Mat roi_gray;
		cvtColor(Block_ROI[i].mat, roi_gray, COLOR_BGR2GRAY);

		Mat roi_thresh;
		threshold(roi_gray, roi_thresh, 0, 255, THRESH_BINARY|THRESH_OTSU);

		vector > contours;
		findContours(roi_thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
		for (int j = 0; j < contours.size(); j++)
		{
			Rect rect = boundingRect(contours[j]);
			//字符相对于银行卡所在的位置
			Rect roi_rect(rect.x + Block_ROI[i].rect.x, rect.y + Block_ROI[i].rect.y, rect.width, rect.height);	
			Mat r_roi = Block_ROI[i].mat(rect);
			Slice_ROI.push_back({ r_roi ,roi_rect });		
		}
	}

	if (Slice_ROI.size() != 16) return false;

	for (int i = 0; i < Slice_ROI.size() - 1; i++)
	{
		for (int j = 0; j < Slice_ROI.size() - 1 - i; j++)
		{
			if (Slice_ROI[j].rect.x > Slice_ROI[j + 1].rect.x)
			{
				Card temp = Slice_ROI[j];
				Slice_ROI[j] = Slice_ROI[j + 1];
				Slice_ROI[j + 1] = temp;
			}
		}
	}

	//for (int i = 0; i < Slice_ROI.size(); i++)
	//{
	//	imshow(to_string(i), Slice_ROI[i].mat);
	//	waitKey(0);
	//}

	return true;
}

bool ReadData(string filename, vector&label)
{
	fstream fin;
	fin.open(filename, ios::in);
	if (!fin.is_open())
	{
		cout << "can not open the file!" << endl;
		return false;
	}

	int data[10] = { 0 };
	for (int i = 0; i < 10; i++)
	{
		fin >> data[i];
	}
	fin.close();

	for (int i = 0; i < 10; i++)
	{
		label.push_back(data[i]);
	}
	return true;
}

bool Template_Matching(vector&Card_Temp,
	vector&Block_ROI, vector&Slice_ROI,
	vector&result_index)
{
	for (int i = 0; i < Slice_ROI.size(); i++)
	{
		//将字符resize成合适大小,利于识别
		resize(Slice_ROI[i].mat, Slice_ROI[i].mat, Size(60, 80), 1, 1, INTER_LINEAR);

		Mat gray;
		cvtColor(Slice_ROI[i].mat, gray, COLOR_BGR2GRAY);

		int maxIndex = 0;
		double Max = 0.0;
		for (int j = 0; j < Card_Temp.size(); j++)
		{		
			resize(Card_Temp[j].mat, Card_Temp[j].mat, Size(60, 80), 1, 1, INTER_LINEAR);

			Mat temp_gray;
			cvtColor(Card_Temp[j].mat, temp_gray, COLOR_BGR2GRAY);

			//进行模板匹配,识别数字
			Mat result;
			matchTemplate(gray, temp_gray, result, TM_SQDIFF_NORMED);
			double minVal, maxVal;
			Point minLoc, maxLoc;

			minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);
			
			//得分最大的视为匹配结果
			if (maxVal > Max)
			{
				Max = maxVal;
				maxIndex = j; //匹配结果
			}
		}

		result_index.push_back(maxIndex);//将匹配结果进行保存
	}

	if (result_index.size() != 16)return false;

	return true;
}

bool Show_Result(Mat src, 
	vector&Block_ROI,
	vector&Slice_ROI, 
	vector&result_index)
{
	//读取label标签
	vectorlabel;
	if (!ReadData("label.txt", label))return false;

	//将匹配结果进行显示
	for (int i = 0; i < Block_ROI.size(); i++)
	{
		rectangle(src, Rect(Block_ROI[i].rect.tl(), Block_ROI[i].rect.br()), Scalar(0, 255, 0), 2);
	}
	for (int i = 0; i < Slice_ROI.size(); i++)
	{
		cout << label[result_index[i]] << " ";
		putText(src, to_string(label[result_index[i]]), Point(Slice_ROI[i].rect.tl()), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
	}

	imshow("Demo", src);
	waitKey(0);
	destroyAllWindows();

	return true;
}


5.3 main文件
#include
#include"CardDectection.h"
using namespace std;
using namespace cv;

int main()
{

	Mat src = imread("card.png");   //源图像 yhk
	Mat temp = imread("number.png"); //模板图像

	if (src.empty() || temp.empty())
	{
		cout << "no image data !" << endl;
		system("pause");
		return -1;
	}

	vectorCard_Temp;
	if (!Get_Template(temp, Card_Temp))
	{
		cout << "模板切割失败!" << endl;
		system("pause");
		return -1;
	}


	vectorBlock_ROI;
	if (Cut_Block(src, Block_ROI))
	{
		vectorSlice_ROI;
		if (Cut_Slice(Block_ROI, Slice_ROI))
		{
			vectorresult_index;
			if (Template_Matching(Card_Temp, Block_ROI, Slice_ROI, result_index))
			{
				Show_Result(src, Block_ROI, Slice_ROI, result_index);
			}
			else
			{
				cout << "识别失败!" << endl;
				system("pause");
				return -1;
			}
		}
		else
		{
			cout << "切片失败!" << endl;
			system("pause");
			return -1;
		}
	}
	else
	{
		cout << "切块失败!" << endl;
		system("pause");
		return -1;
	}

	system("pause");
	return 0;
}

总结

本文使用OpenCV C++进行yhk号识别,关键步骤有以下几点。
1、yhk号定位。根据本案例中的yhk图像特征,我们先将yhk号所在位置定位。根据图像特征,我们可以将yhk号分为四个小方块进行定位切割。
2、字符分割。根据前面得到的yhk号四个小方块,我们需要将它们顺序切割出每一个字符。
3、字符识别。我们将得到的字符与我们准备好的模板一一进行匹配。这里使用的匹配算法是图像模板匹配。

需要说明的是:本案例是根据特定图像、特定需求设定的算法。并不具有鲁棒性。所以在图像预处理阶段很重要。我们需要提取出我们需要的图像特征,这样才能够进行后续的工作。所以本案例也只是使用传统的图像处理手段实现yhk号识别功能。将大致流程作了一个说明,这里只提供一个参考作用!!!本案例还有一个特别需要注意的就是,我们需要保存切割下来的字符相对于原图像所在的坐标位置。本案例跟OpenCV C++案例实战十《车牌号识别》算法思路非常相似,如果大家感兴趣的话也可以进行参考一下。欢迎大家进行交流学习!!!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5711150.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-17
下一篇 2022-12-17

发表评论

登录后才能评论

评论列表(0条)

保存