Apache Spark是一个闪电般快速的实时处理框架。它进行内存计算以实时分析数据。由于 Apache Hadoop MapReduce 仅执行批处理并且缺乏实时处理功能,因此它开始出现。因此,引入了Apache Spark,因为它可以实时执行流处理,也可以处理批处理。
除了实时和批处理之外,Apache Spark还支持交互式查询和迭代算法。Apache Spark有自己的集群管理器,可以托管其应用程序。它利用Apache Hadoop进行存储和处理。它使用 HDFS (Hadoop分布式文件系统)进行存储,它也可以在 YARN 上运行Spark应用程序。
PySpark - 概述Apache Spark是用 Scala编程语言 编写的。为了用Spark支持Python,Apache Spark社区发布了一个工具PySpark。使用PySpark,您也可以使用Python编程语言中的 RDD 。正是由于一个名为 Py4j 的库,他们才能实现这一目标。
PySpark提供了 PySpark Shell ,它将Python API链接到spark核心并初始化Spark上下文。今天,大多数数据科学家和分析专家都使用Python,因为它具有丰富的库集。将Python与Spark集成对他们来说是一个福音。
PySpark环境设置第1步 - 转到官方Apache Spark 下载页面并下载最新版本的Apache Spark。在本教程中,
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)