最近看了很多关于FLOPs计算的实现方法,也自己尝试了一些方法,发现最好用的还是PyTorch中的thop库(代码如下):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = 模型的名字().to(device) inputs = torch.randn(1,3,512,1024) ####(360,640) inputs=inputs.to(device) macs, params = profile(model,inputs=(inputs,)) ##verbose=False print('The number of MACs is %s'%(macs/1e9)) ##### MB print('The number of params is %s'%(params/1e6)) ##### MB
实现起来确实很简单,那么问题来了,这里面算出来的macs到底是MACs还是FLOPs呢?先说我自己探索得到的结论,这里计算出的macs其实就是FLOPs(每秒钟浮点运算次数),前提是:不计算卷积层的bias,原因如下:
自己手动计算ResNet18的FLOPs,对于512*1024*3的输入尺寸。
(1)ResNet18的代码:
class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, r=1, stride=1, downsample=None, norm_layer=nn.BatchNorm2d): super(BasicBlock, self).__init__() # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, dilation=r) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet18(nn.Module): def __init__(self, block=BasicBlock, layers=[2,2,2,2], zero_init_residual=False, norm_layer=nn.BatchNorm2d): super(ResNet18, self).__init__() self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], r=2, norm_layer=norm_layer) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, r=2, norm_layer=norm_layer) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, r=2, norm_layer=norm_layer) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, r=2, norm_layer=norm_layer) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, r=1, norm_layer=nn.BatchNorm2d): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, r, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x_downsampling_8 = x ###(h/8,128) x = self.layer3(x) x_downsampling_16 = x ###(h/16,256) x = self.layer4(x) ###(h/32,512) return x, x_downsampling_8, x_downsampling_16
(2)用profile函数计算得到的macs值为 19.0GB
(3)自己手动计算FLOPs ≈ 20GB
因此,在不统计卷积层bias计算次数的前提下,profile函数计算得到的macs值其实就是FLOPs。
(PS:个人理解,欢迎批评纠正)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)