什么是伪随机
序列呢?让我们看一个例子。序列α= 0110100,其中0和1的个数相差1。把α看成
周期为7的无限序列,左移1位得,α1 = 1101000,把α1也看成周期为7的无限序列。 α= 0110100α1=1101000在一个周期里,α和α1的对应位置元素相同的位置有3个,元素不同的位置有4个,它们的差等于-1,这个数称为α的自相关
函数在1处的值,记作。类似地,把α左移2位,3位,…6位,可以求出α的自相关函数在2处,3处,…6处的值也等于-1。当0 <s <7时,称为α的自相关函数的旁瓣值。从刚才所求出的结果知道,α= 0110100的自相关函数的旁瓣值只有一个:-1。像这样的序列称为伪随机序列或拟完美序列。即,一个周期为v的无限序列,如果在一个周期里,0和1的个数相差1,并且它的自相关函数的旁瓣值只有一个:-1,则称它为伪随机序列或拟完美序列。α的自相关函数的旁瓣值的绝对值越大,就表明(或把的0和1互换得到的序列)与α越像。因此如果周期为v的序列α是一个伪随机序列,那么α不管左移几位(只要不是v的倍数),得到的序列都和α很不像,这样就很难分辨出α是什么样子。好比川剧的变脸,由于每一次都变得和演员的脸很不一样,因此很难知道演员自己的脸是什么样子。反之如果演员每一次化装后都跟他自己的脸有许多相同之处,那么就容易辨认演员长得什么样。这说明了用伪随机序列作为密钥序列,是比较安全的。 伪随机序列是用函数生成随机数。它并不真正是随机的。只是比较近似随机 一个简单的随机数产生方法如下: X0=345 Xn=(Xn-1*A+B)/C 其中A,B,C是常数,上式每执行一次就生成一个伪随机数 还可以在数组中填入若干个数然后顺序取出进行模拟。性能好,但是这种随机数就很不象随机数了。 还有就是根据当前系统时间,内存值等等用函数生成了。伪随机序列扰码
进行基带信号传输的缺点是其频谱会因数据出现连“1”和连“0”而包含大的低频成分,不适应信道的传输特性,也不利于从中提取出时钟信息。解决办法之一是采用扰码技术,使信号受到随机化处理,变为伪随机序列,又称为“数据随机化”和“能量扩散”处理。扰码不但能改善位定时的恢复质量,还可以使信号频谱平滑,使帧同步和自适应同步和自适应时域均衡等系统的性能得到改善。
扰码虽然“扰乱”了原有数据的本来规律,但因为是人为的“扰乱”,在接收端很容易去加扰,恢复成原数据流。
实现加扰和解码,需要产生伪随机二进制序列(PRBS)再与输入数据逐个比特作运算。PRBS也称为m序列,这种m序列与TS的数据码流进行模2加运算后,数据流中的“1”和“0”的连续游程都很短,且出现的概率基本相同。
利用伪随机序列进行扰码也是实现数字信号高保密性传输的重要手段之一。一般将信源产生的二进制数字信息和一个周期很长的伪随即序列模2相加,就可将原信息变成不可理解的另一序列。这种信号在信道中传输自然具有高度保密性。在接收端将接收信号再加上(模2和)同样的伪随机序列,就恢复为原来发送的信息。
在DVB-C系统中的CA系统原理就源于此,只不过为了加强系统的保密性,其伪随机序列是不断变化的(10秒变一次),这个伪随机序列又叫控制字(CW
评论列表(0条)