质数又称素数,是指在大于1的自然数中,除了1和它本身以外不再有其它因数的自然数。即不能被其它自然数整除的数叫做质数。如果能被整除则叫做合数,指自然数中除了能被1和本身整除外,还能被其它数整除的数。
质数的性质
质数一般有以下几个性质:
1、质数的个数是无穷的。
2、质数p的约数只有两个,即1和p。
3、所有大于10的质数中,个位数只有1,3,7,9。
4、任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
就是因数只有1和自己本身的数叫做质数,质数也可以被称为素数,在1~100中的质数有:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.在自然数中,质数是无限的,除了1和0不是质数,也不是合数,于是其他的数都可以被分为质数和合数质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。
质数数目计算相关:
尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”,而素数定理可以回答此问题。
1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
2、存在任意长度的素数等差数列。
3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数(挪威数学家布朗,1920年)。
4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界(瑞尼,1948年)。
5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)。
6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数,简称为 (1 + 2)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)