可微是什么意思?

可微是什么意思?,第1张

可微,是指可以对函数进行微分运算。

一个函数可微的定义是:

设函数y= f(x),且f(x)在x的领域内有定义,若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx)(其中A与Δx无关),则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx

多说一句:

数学中的定义,是很严谨的,只能用数学语言表述。

若采用“通俗易懂”的语言来描述,可能就会出现偏差。

可微的充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

二元函数的条件:

1、二元函数可微的必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

2、二元函数可微的充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A为不依赖Δx的常数,ο(Δx)是比Δx高阶的无穷小。

则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x= x0时,则记作dy∣x=x0。

必要条件:

1、若函数在某点可微分,则函数在该点必连续;

2、若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

充分条件:

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5801019.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-01
下一篇 2023-02-01

发表评论

登录后才能评论

评论列表(0条)

保存