什么是指数式,对数式

什么是指数式,对数式,第1张

指数

数学概念:

乘方a^n中,其中的a叫做底数,n叫做指数,结果叫幂。

对数的概念

英语名词:logarithms

如果a^b=n,那么log(a)(n)=b。其中,a叫做“底数”,n叫做“真数”,b叫做“以a为底的n的对数”。

log(a)(n)函数叫做对数函数。对数函数中x的定义域是x>0,零和负数没有对数;a的定义域是a>0且a≠1。

用^表示乘方,用log(a)(b)表示以a为底,b的对数

*表示乘号,/表示除号

定义式:

若a^n=b(a0且a1)

则n=log(a)(b)

基本性质:

1.a^(log(a)(b))=b

2.log(a)(MN)=log(a)(M)+log(a)(N)

3.log(a)(M/N)=log(a)(M)-log(a)(N)

4.log(a)(M^n)=nlog(a)(M)

推导

1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=

用^表示乘方,用log(a)(b)表示以a为底,b的对数

*表示乘号,/表示除号

定义式:

若a^n=b(a>0且a≠1)

则n=log(a)(b)

基本性质:

1.a^(log(a)(b))=b

2.log(a)(MN)=log(a)(M)+log(a)(N)

3.log(a)(M/N)=log(a)(M)-log(a)(N)

4.log(a)(M^n)=nlog(a)(M)

推导

1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.

MN=M*N

由基本性质1(换掉M和N)

a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(MN)=log(a)(M)+log(a)(N)

3.与2类似处理

MN=M/N

由基本性质1(换掉M和N)

a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]

由指数的性质

a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M/N)=log(a)(M)-log(a)(N)

4.与2类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)]={a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)]=a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式

log(a)(N)=log(b)(N)/log(b)(a)

推导如下

N=a^[log(a)(N)]

a=b^[log(b)(a)]

综合两式可得

N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]

所以

b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}

所以

log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N)/log(b)(a)

性质二:(不知道什么名字)

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下

由换底公式[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(a^n)/ln(b^n)

由基本性质4可得

log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}

再由换底公式

log(a^n)(b^m)=m/n*[log(a)(b)]

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b。

对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算法则:

1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】

2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】

3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】

4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5820852.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-02
下一篇 2023-02-02

发表评论

登录后才能评论

评论列表(0条)

保存