余弦(余弦函数),三角函数的一种。是邻边比斜边。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
扩展资料:
若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值:
①若m(c1,c2)=2,则有两解;
②若m(c1,c2)=1,则有一解;
③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。
假如有一个直角三角形 ABC,其中 a、b 是直角边,c 是斜边。
正弦(sin)等于对边比斜边sinA=a/c;
余弦(cos)等于邻边比斜边cosA=b/c;
正切(tan)等于对边比邻边tanA=a/b。
扩展资料
1、互余角的三角函数间的关系:
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
2、常用的诱导公式
设α为任意角,终边相同的角的同一三角函数的值相等
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
有关的定理:
1、正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。
2、余弦定理:
3、在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
参考资料来源:百度百科-正弦
参考资料来源:百度百科-余弦
参考资料来源:百度百科-正切
cos是邻边比斜边。
cosx即角x的余弦函数,在直角三角形中,锐角x所邻的直角边与斜边的比值即角x的余弦函数,即cosx。所以cos是所邻直角边对斜边的比值。
在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
余弦的性质
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c三角为A,B,C,则满足性质:
a^2=b^2+c^2-2·b·c·cosA
b^2=a^2+c^2-2·a·c·cosB
c^2=a^2+b^2-2·a·b·cosC
cosC=(a^2+b^2-c^2)/(2·a·b)
cosB=(a^2+c^2-b^2)/(2·a·c)
cosA=(c^2+b^2-a^2)/(2·b·c)
第一余弦定理(任意三角形射影定理)
设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)