弧度制是指用弧长与半径之比度量对应圆心角角度的方式,用符号rad表示,读作弧度。
等于半径长的圆弧所对的圆心角叫做1弧度的角。由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量。角度以弧度给出时,通常不写弧度单位。另外一种常用的度量角的方法是角度制。弧度制的精髓就在于统一了度量弧与角的单位,从而大大简化了有关公式及运算,尤其在高等数学中,其优点就格外明显。
扩展资料:
根据定义,一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。
在具体计算中,角度以弧度给出时,通常不写弧度单位,直接写值。最典型的例子是三角函数,如sin 8π、tan (3π/2)。
在初中数学中,我们学过圆弧长公式:
弧长=nπr/180,在这里n就是角度数,即圆心角n所对应的弧长。
但如果我们利用弧度的话,以上的式子将会变得更简单:(注意,弧度有正负之分)
l=|α| r,即α的大小与半径之积。
同样,我们可以简化扇形面积公式:
S=|α| r^2/2(二分之一倍的α角的大小,与半径的平方之积,从中我们可以看出,当|α|=2π,即周角时,公式变成了S=πr^2,圆面积的公式!)
弧度数公式就是角度数×﹙π/180°﹚,因为一个π=180°,比如一个角的度数是540°,那么它的弧度数=540°×﹙π/180°﹚=3π。
弧度制公式:L=πRα/180,用弧长与半径之比度量对应圆心角角度的方式,叫做弧度制,用符号rad表示,读作弧度。等于半径长的圆弧所对的圆心角叫做1弧度的角。
弧长等于半径的弧,其所对的圆心角为1弧度。(即两条射线从圆心向圆周射出,形成一个夹角和夹角正对的一段弧。当这段弧长正好等于圆的半径时,两条射线的夹角的弧度为1)。
详细信息:
在数学和物理中,弧度是角的度量单位。它是由国际单位制导出的单位,单位缩写是rad。定义:弧长等于半径的弧,其所对的圆心角为1弧度。即两条射线从圆心向圆周射出,形成一个夹角和夹角正对的一段弧。当这段弧长正好等于圆的半径时,两条射线的夹角的弧度为1。
在初中数学中,我们学过圆弧长公式:弧长=nπr/180,在这里n就是角度数,即圆心角n所对应的弧长。但如果我们利用弧度的话,以上的式子将会变得更简单:(注意,弧度有正负之分)l=|α|r,即α的大小与半径之积。
就是角度数×﹙π/180°﹚
因为一个π=180°
比如一个角的度数是540°
那么它的弧度数=540°×﹙π/180°﹚=3π
弧长等于半径的弧,其所对的圆心角为1弧度。(即两条射线从圆心向圆周射出,形成一个夹角和夹角正对的一段弧。当这段弧长正好等于圆的半径时,两条射线的夹角的弧度为1)。
简化扇形面积公式:
S=|α| r^2/2(二分之一倍的α角的大小,与半径的平方之积,从中我们可以看出,当|α|=2π,即周角时,公式变成了S=πr^2,圆面积的公式!)
扩展资料:
在具体计算中,角度以弧度给出时,通常不写弧度单位,直接写值。最典型的例子是三角函数,如sin 8π、tan (3π/2)。
圆锥母线,弧长,面积计算公式
圆锥的表面积=圆锥的侧面积+底面圆的面积
其中:圆锥体的侧面积
圆锥体的全面积
π为圆周率≈3.14
R为圆锥体底面圆的直径
L为圆锥的母线长(注意:不是圆锥的高)是展开扇形的边长
n圆锥圆心角
弧长=圆周长
参考资料:百度百科---弧度
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)