(1)即已知直线l:ax+by+c=0,则直线l的方向向量为=(-b,a)或(b,-a)。
(2)若直线l的斜率为k,则l的一个方向向量为=(1,k)。
(3)若A(x1,y1),B(x2,y2),则AB所在直线的一个方向向量为=(x2-x1,y2-y1)。
直线的方向向量是用直线上任意两点坐标相减得到的向量,直线的法向量是与方向向量相垂直的向量。数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量。有方向与大小,分为自由向量与固定向量。数学中,把只有大小但没有方向的量叫做数量,物理中称为标量。例如距离、质量、密度、温度等。方向向量就是用直线上任意两点坐标相减得到的向量,法向量是与方向向量相垂直的向量.譬如一直线有两点(1,2)(3,4)则方向向量为(2,1),设法向量为(a,x)则2a+x=0→x=-2a,即法向量为(a,-2a)法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。 由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)