AIO 简介

AIO 简介,第1张

AIO 简介

from:http://blog.chinaunix.net/uid-11572501-id-2868654.html

 

Linux的I/O机制经历了一下几个阶段的演进:
1. 同步阻塞I/O: 用户进程进行I/O *** 作,一直阻塞到I/O *** 作完成为止。



2. 同步非阻塞I/O: 用户程序可以通过设置文件描述符的属性O_NONBLOCK,I/O *** 作可以立即返回,但是并不保证I/O *** 作成功。



3. 异步事件阻塞I/O: 用户进程可以对I/O事件进行阻塞,但是I/O *** 作并不阻塞。


通过select/poll/epoll等函数调用来达到此目的。



4. 异步时间非阻塞I/O: 也叫做异步I/O(AIO),用户程序可以通过向内核发出I/O请求命令,不用等带I/O事件真正发生,可以继续做
另外的事情,等I/O *** 作完成,内核会通过函数回调或者信号机制通知用户进程。


这样很大程度提高了系统吞吐量。


AIO 简介

Linux 异步 I/O 是 Linux 内核中提供的一个相当新的增强。


它是 2.6 版本内核的一个标准特性,但是我们在 2.4 版本内核的补丁中也可以找到它。


AIO 背后的基本思想是允许进程发起很多 I/O *** 作,而不用阻塞或等待任何 *** 作完成。


稍后或在接收到 I/O *** 作完成的通知时,进程就可以检索 I/O *** 作的结果。


I/O 模型

在深入介绍 AIO API 之前,让我们先来探索一下 Linux 上可以使用的不同 I/O 模型。


这并不是一个详尽的介绍,但是我们将试图介绍最常用的一些模型来解释它们与异步 I/O 之间的区别。


图 1 给出了同步和异步模型,以及阻塞和非阻塞的模型。


1. 基本 Linux I/O 模型的简单矩阵

每个 I/O 模型都有自己的使用模式,它们对于特定的应用程序都有自己的优点。


本节将简要对其一一进行介绍。


同步阻塞 I/O

I/O 密集型与 CPU 密集型进程的比较

I/O 密集型进程所执行的 I/O *** 作比执行的处理 *** 作更多。


CPU 密集型的进程所执行的处理 *** 作比 I/O *** 作更多。


Linux 2.6 的调度器实际上更加偏爱 I/O 密集型的进程,因为它们通常会发起一个 I/O *** 作,然后进行阻塞,这就意味着其他工作都可以在两者之间有效地交错进行。


最常用的一个模型是同步阻塞 I/O 模型。


在这个模型中,用户空间的应用程序执行一个系统调用,这会导致应用程序阻塞。


这意味着应用程序会一直阻塞,直到系统调用完成为止(数据传输完成或发生错误)。


调用应用程序处于一种不再消费 CPU 而只是简单等待响应的状态,因此从处理的角度来看,这是非常有效的。


图 2 给出了传统的阻塞 I/O 模型,这也是目前应用程序中最为常用的一种模型。


其行为非常容易理解,其用法对于典型的应用程序来说都非常有效。


在调用 read 系统调用时,应用程序会阻塞并对内核进行上下文切换。


然后会触发读 *** 作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。


然后应用程序就会解除阻塞(read 调用返回)。


2. 同步阻塞 I/O 模型的典型流程

从应用程序的角度来说,read 调用会延续很长时间。


实际上,在内核执行读 *** 作和其他工作时,应用程序的确会被阻塞。


同步非阻塞 I/O

同步阻塞 I/O 的一种效率稍低的变种是同步非阻塞 I/O。


在这种模型中,设备是以非阻塞的形式打开的。


这意味着 I/O *** 作不会立即完成,read *** 作可能会返回一个错误代码,说明这个命令不能立即满足(EAGAIN 或EWOULDBLOCK),如图 3 所示。


3. 同步非阻塞 I/O 模型的典型流程

非阻塞的实现是 I/O 命令可能并不会立即满足,需要应用程序调用许多次来等待 *** 作完成。


这可能效率不高,因为在很多情况下,当内核执行这个命令时,应用程序必须要进行忙碌等待,直到数据可用为止,或者试图执行其他工作。


正如图 3 所示的一样,这个方法可以引入 I/O *** 作的延时,因为数据在内核中变为可用到用户调用 read 返回数据之间存在一定的间隔,这会导致整体数据吞吐量的降低。


异步阻塞 I/O

另外一个阻塞解决方案是带有阻塞通知的非阻塞 I/O。


在这种模型中,配置的是非阻塞 I/O,然后使用阻塞 select 系统调用来确定一个 I/O 描述符何时有 *** 作。


使 select 调用非常有趣的是它可以用来为多个描述符提供通知,而不仅仅为一个描述符提供通知。


对于每个提示符来说,我们可以请求这个描述符可以写数据、有读数据可用以及是否发生错误的通知。


4. 异步阻塞 I/O 模型的典型流程 (select)

select 调用的主要问题是它的效率不是非常高。


尽管这是异步通知使用的一种方便模型,但是对于高性能的 I/O *** 作来说不建议使用。


异步非阻塞 I/O(AIO)

最后,异步非阻塞 I/O 模型是一种处理与 I/O 重叠进行的模型。


读请求会立即返回,说明 read 请求已经成功发起了。


在后台完成读 *** 作时,应用程序然后会执行其他处理 *** 作。


当 read 的响应到达时,就会产生一个信号或执行一个基于线程的回调函数来完成这次 I/O 处理过程。


5. 异步非阻塞 I/O 模型的典型流程

在一个进程中为了执行多个 I/O 请求而对计算 *** 作和 I/O 处理进行重叠处理的能力利用了处理速度与 I/O 速度之间的差异。


当一个或多个 I/O 请求挂起时,CPU 可以执行其他任务;或者更为常见的是,在发起其他 I/O 的同时对已经完成的 I/O 进行 *** 作。


下一节将深入介绍这种模型,探索这种模型使用的 API,然后展示几个命令。



回页首

异步 I/O 的动机

从前面 I/O 模型的分类中,我们可以看出 AIO 的动机。


这种阻塞模型需要在 I/O *** 作开始时阻塞应用程序。


这意味着不可能同时重叠进行处理和 I/O *** 作。


同步非阻塞模型允许处理和 I/O *** 作重叠进行,但是这需要应用程序根据重现的规则来检查 I/O *** 作的状态。


这样就剩下异步非阻塞 I/O 了,它允许处理和 I/O *** 作重叠进行,包括 I/O *** 作完成的通知。


除了需要阻塞之外,select 函数所提供的功能(异步阻塞 I/O)与 AIO 类似。


不过,它是对通知事件进行阻塞,而不是对 I/O 调用进行阻塞。



回页首

Linux 上的 AIO 简介

本节将探索 Linux 的异步 I/O 模型,从而帮助我们理解如何在应用程序中使用这种技术。


在传统的 I/O 模型中,有一个使用惟一句柄标识的 I/O 通道。


在 UNIX® 中,这些句柄是文件描述符(这对等同于文件、管道、套接字等等)。


在阻塞 I/O 中,我们发起了一次传输 *** 作,当传输 *** 作完成或发生错误时,系统调用就会返回。


Linux 上的 AIO

AIO 在 2.5 版本的内核中首次出现,现在已经是 2.6 版本的产品内核的一个标准特性了。


在异步非阻塞 I/O 中,我们可以同时发起多个传输 *** 作。


这需要每个传输 *** 作都有惟一的上下文,这样我们才能在它们完成时区分到底是哪个传输 *** 作完成了。


在 AIO 中,这是一个 aiocb(AIO I/O Control Block)结构。


这个结构包含了有关传输的所有信息,包括为数据准备的用户缓冲区。


在产生 I/O (称为完成)通知时,aiocb 结构就被用来惟一标识所完成的 I/O *** 作。


这个 API 的展示显示了如何使用它。



回页首

AIO API

AIO 接口的 API 非常简单,但是它为数据传输提供了必需的功能,并给出了两个不同的通知模型。


表 1 给出了 AIO 的接口函数,本节稍后会更详细进行介绍。


1. AIO 接口 API

API 函数

说明

aio_read

请求异步读 *** 作

aio_error

检查异步请求的状态

aio_return

获得完成的异步请求的返回状态

aio_write

请求异步写 *** 作

aio_suspend

挂起调用进程,直到一个或多个异步请求已经完成(或失败)

aio_cancel

取消异步 I/O 请求

lio_listio

发起一系列 I/O *** 作

每个 API 函数都使用 aiocb 结构开始或检查。


这个结构有很多元素,但是清单 1 仅仅给出了需要(或可以)使用的元素。


清单 1. aiocb 结构中相关的域

struct aiocb {

int aio_fildes; // File Descriptor

int aio_lio_opcode; // Valid only for lio_listio (r/w/nop)

volatile void *aio_buf; // Data Buffer

size_t aio_nbytes; // Number of Bytes in Data Buffer

struct sigevent aio_sigevent; // Notification Structure

/* Internal fields */

...

};

sigevent 结构告诉 AIO 在 I/O *** 作完成时应该执行什么 *** 作。


我们将在 AIO 的展示中对这个结构进行探索。


现在我们将展示各个 AIO 的 API 函数是如何工作的,以及我们应该如何使用它们。


aio_read

aio_read 函数请求对一个有效的文件描述符进行异步读 *** 作。


这个文件描述符可以表示一个文件、套接字甚至管道。


aio_read 函数的原型如下:

int aio_read( struct aiocb *aiocbp );

aio_read 函数在请求进行排队之后会立即返回。


如果执行成功,返回值就为 0;如果出现错误,返回值就为 -1,并设置 errno 的值。


要执行读 *** 作,应用程序必须对 aiocb 结构进行初始化。


下面这个简短的例子就展示了如何填充 aiocb 请求结构,并使用 aio_read 来执行异步读请求(现在暂时忽略通知) *** 作。


它还展示了 aio_error 的用法,不过我们将稍后再作解释。


清单 2. 使用 aio_read 进行异步读 *** 作的例子

#include

...

int fd, ret;

struct aiocb my_aiocb;

fd = open( "file.txt", O_RDONLY );

if (fd < 0) perror("open");

/* Zero out the aiocb structure (recommended) */

bzero( (char *)&my_aiocb, sizeof(struct aiocb) );

/* Allocate a data buffer for the aiocb request */

my_aiocb.aio_buf = malloc(BUFSIZE+1);

if (!my_aiocb.aio_buf) perror("malloc");

/* Initialize the necessary fields in the aiocb */

my_aiocb.aio_fildes = fd;

my_aiocb.aio_nbytes = BUFSIZE;

my_aiocb.aio_offset = 0;

ret = aio_read( &my_aiocb );

if (ret < 0) perror("aio_read");

while ( aio_error( &my_aiocb ) == EINPROGRESS ) ;

if ((ret = aio_return( &my_iocb )) > 0) {

/* got ret bytes on the read */

} else {

/* read failed, consult errno */

}

在清单 2 中,在打开要从中读取数据的文件之后,我们就清空了 aiocb 结构,然后分配一个数据缓冲区。


并将对这个数据缓冲区的引用放到 aio_buf 中。


然后,我们将 aio_nbytes 初始化成缓冲区的大小。


并将 aio_offset设置成 0(该文件中的第一个偏移量)。


我们将 aio_fildes 设置为从中读取数据的文件描述符。


在设置这些域之后,就调用 aio_read 请求进行读 *** 作。


我们然后可以调用 aio_error 来确定 aio_read 的状态。


只要状态是EINPROGRESS,就一直忙碌等待,直到状态发生变化为止。


现在,请求可能成功,也可能失败。


使用 AIO 接口来编译程序

我们可以在 aio.h 头文件中找到函数原型和其他需要的符号。


在编译使用这种接口的程序时,我们必须使用 POSIX 实时扩展库(librt)。


注意使用这个 API 与标准的库函数从文件中读取内容是非常相似的。


除了 aio_read 的一些异步特性之外,另外一个区别是读 *** 作偏移量的设置。


在传统的 read 调用中,偏移量是在文件描述符上下文中进行维护的。


对于每个读 *** 作来说,偏移量都需要进行更新,这样后续的读 *** 作才能对下一块数据进行寻址。


对于异步 I/O *** 作来说这是不可能的,因为我们可以同时执行很多读请求,因此必须为每个特定的读请求都指定偏移量。


aio_error

aio_error 函数被用来确定请求的状态。


其原型如下:

int aio_error( struct aiocb *aiocbp );

这个函数可以返回以下内容:

· EINPROGRESS,说明请求尚未完成

· ECANCELLED,说明请求被应用程序取消了

· -1,说明发生了错误,具体错误原因可以查阅 errno

aio_return

异步 I/O 和标准块 I/O 之间的另外一个区别是我们不能立即访问这个函数的返回状态,因为我们并没有阻塞在 read 调用上。


在标准的 read 调用中,返回状态是在该函数返回时提供的。


但是在异步 I/O 中,我们要使用aio_return 函数。


这个函数的原型如下:

ssize_t aio_return( struct aiocb *aiocbp );

只有在 aio_error 调用确定请求已经完成(可能成功,也可能发生了错误)之后,才会调用这个函数。


aio_return 的返回值就等价于同步情况中 read 或 write 系统调用的返回值(所传输的字节数,如果发生错误,返回值就为 -1)。


aio_write

aio_write 函数用来请求一个异步写 *** 作。


其函数原型如下:

int aio_write( struct aiocb *aiocbp );

aio_write 函数会立即返回,说明请求已经进行排队(成功时返回值为 0,失败时返回值为 -1,并相应地设置 errno)。


这与 read 系统调用类似,但是有一点不一样的行为需要注意。


回想一下对于 read 调用来说,要使用的偏移量是非常重要的。


然而,对于 write 来说,这个偏移量只有在没有设置 O_APPEND 选项的文件上下文中才会非常重要。


如果设置了 O_APPEND,那么这个偏移量就会被忽略,数据都会被附加到文件的末尾。


否则,aio_offset 域就确定了数据在要写入的文件中的偏移量。


aio_suspend

我们可以使用 aio_suspend 函数来挂起(或阻塞)调用进程,直到异步请求完成为止,此时会产生一个信号,或者发生其他超时 *** 作。


调用者提供了一个 aiocb 引用列表,其中任何一个完成都会导致 aio_suspend 返回。


aio_suspend 的函数原型如下:

int aio_suspend( const struct aiocb *const cblist[],

int n, const struct timespec *timeout );

aio_suspend 的使用非常简单。


我们要提供一个 aiocb 引用列表。


如果任何一个完成了,这个调用就会返回 0。


否则就会返回 -1,说明发生了错误。


请参看清单 3。


清单 3. 使用 aio_suspend 函数阻塞异步 I/O

struct aioct *cblist[MAX_LIST]

/* Clear the list. */

bzero( (char *)cblist, sizeof(cblist) );

/* Load one or more references into the list */

cblist[0] = &my_aiocb;

ret = aio_read( &my_aiocb );

ret = aio_suspend( cblist, MAX_LIST, NULL );

注意,aio_suspend 的第二个参数是 cblist 中元素的个数,而不是 aiocb 引用的个数。


cblist 中任何 NULL 元素都会被 aio_suspend 忽略。


如果为 aio_suspend 提供了超时,而超时情况的确发生了,那么它就会返回 -1,errno 中会包含 EAGAIN。


aio_cancel

aio_cancel 函数允许我们取消对某个文件描述符执行的一个或所有 I/O 请求。


其原型如下:

int aio_cancel( int fd, struct aiocb *aiocbp );

要取消一个请求,我们需要提供文件描述符和 aiocb 引用。


如果这个请求被成功取消了,那么这个函数就会返回 AIO_CANCELED。


如果请求完成了,这个函数就会返回 AIO_NOTCANCELED。


要取消对某个给定文件描述符的所有请求,我们需要提供这个文件的描述符,以及一个对 aiocbp 的 NULL 引用。


如果所有的请求都取消了,这个函数就会返回 AIO_CANCELED;如果至少有一个请求没有被取消,那么这个函数就会返回 AIO_NOT_CANCELED;如果没有一个请求可以被取消,那么这个函数就会返回 AIO_ALLDONE。


我们然后可以使用 aio_error 来验证每个 AIO 请求。


如果这个请求已经被取消了,那么 aio_error 就会返回 -1,并且 errno会被设置为 ECANCELED。


lio_listio

最后,AIO 提供了一种方法使用 lio_listio API 函数同时发起多个传输。


这个函数非常重要,因为这意味着我们可以在一个系统调用(一次内核上下文切换)中启动大量的 I/O *** 作。


从性能的角度来看,这非常重要,因此值得我们花点时间探索一下。


lio_listio API 函数的原型如下:

int lio_listio( int mode, struct aiocb *list[], int nent,

struct sigevent *sig );

mode 参数可以是 LIO_WAIT 或 LIO_NOWAIT。


LIO_WAIT 会阻塞这个调用,直到所有的 I/O 都完成为止。


在 *** 作进行排队之后,LIO_NOWAIT 就会返回。


list 是一个 aiocb 引用的列表,最大元素的个数是由 nent 定义的。


注意list 的元素可以为 NULL,lio_listio 会将其忽略。


sigevent 引用定义了在所有 I/O *** 作都完成时产生信号的方法。


对于 lio_listio 的请求与传统的 read 或 write 请求在必须指定的 *** 作方面稍有不同,如清单 4 所示。


清单 4. 使用 lio_listio 函数发起一系列请求

struct aiocb aiocb1, aiocb2;

struct aiocb *list[MAX_LIST];

...

/* Prepare the first aiocb */

aiocb1.aio_fildes = fd;

aiocb1.aio_buf = malloc( BUFSIZE+1 );

aiocb1.aio_nbytes = BUFSIZE;

aiocb1.aio_offset = next_offset;

aiocb1.aio_lio_opcode = LIO_READ;

...

bzero( (char *)list, sizeof(list) );

list[0] = &aiocb1;

list[1] = &aiocb2;

ret = lio_listio( LIO_WAIT, list, MAX_LIST, NULL );

对于读 *** 作来说,aio_lio_opcode 域的值为 LIO_READ。


对于写 *** 作来说,我们要使用 LIO_WRITE,不过 LIO_NOP 对于不执行 *** 作来说也是有效的。



回页首

AIO 通知

现在我们已经看过了可用的 AIO 函数,本节将深入介绍对异步通知可以使用的方法。


我们将通过信号和函数回调来探索异步函数的通知机制。


使用信号进行异步通知

使用信号进行进程间通信(IPC)是 UNIX 中的一种传统机制,AIO 也可以支持这种机制。


在这种范例中,应用程序需要定义信号处理程序,在产生指定的信号时就会调用这个处理程序。


应用程序然后配置一个异步请求将在请求完成时产生一个信号。


作为信号上下文的一部分,特定的 aiocb 请求被提供用来记录多个可能会出现的请求。


清单 5 展示了这种通知方法。


清单 5. 使用信号作为 AIO 请求的通知

void setup_io( ... )

{

int fd;

struct sigaction sig_act;

struct aiocb my_aiocb;

...

/* Set up the signal handler */

sigemptyset(&sig_act.sa_mask);

sig_act.sa_flags = SA_SIGINFO;

sig_act.sa_sigaction = aio_completion_handler;

/* Set up the AIO request */

bzero( (char *)&my_aiocb, sizeof(struct aiocb) );

my_aiocb.aio_fildes = fd;

my_aiocb.aio_buf = malloc(BUF_SIZE+1);

my_aiocb.aio_nbytes = BUF_SIZE;

my_aiocb.aio_offset = next_offset;

/* Link the AIO request with the Signal Handler */

my_aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;

my_aiocb.aio_sigevent.sigev_signo = SIGIO;

my_aiocb.aio_sigevent.sigev_value.sival_ptr = &my_aiocb;

/* Map the Signal to the Signal Handler */

ret = sigaction( SIGIO, &sig_act, NULL );

...

ret = aio_read( &my_aiocb );

}

void aio_completion_handler( int signo, siginfo_t *info, void *context )

{

struct aiocb *req;

/* Ensure it's our signal */

if (info->si_signo == SIGIO) {

req = (struct aiocb *)info->si_value.sival_ptr;

/* Did the request complete? */

if (aio_error( req ) == 0) {

/* Request completed successfully, get the return status */

ret = aio_return( req );

}

}

return;

}

在清单 5 中,我们在 aio_completion_handler 函数中设置信号处理程序来捕获 SIGIO 信号。


然后初始化 aio_sigevent 结构产生 SIGIO 信号来进行通知(这是通过 sigev_notify 中的 SIGEV_SIGNAL 定义来指定的)。


当读 *** 作完成时,信号处理程序就从该信号的 si_value 结构中提取出 aiocb,并检查错误状态和返回状态来确定 I/O *** 作是否完成。


对于性能来说,这个处理程序也是通过请求下一次异步传输而继续进行 I/O *** 作的理想地方。


采用这种方式,在一次数据传输完成时,我们就可以立即开始下一次数据传输 *** 作。


使用回调函数进行异步通知

另外一种通知方式是系统回调函数。


这种机制不会为通知而产生一个信号,而是会调用用户空间的一个函数来实现通知功能。


我们在 sigevent 结构中设置了对 aiocb 的引用,从而可以惟一标识正在完成的特定请求。


请参看清单 6。


清单 6. AIO 请求使用线程回调通知

void setup_io( ... )

{

int fd;

struct aiocb my_aiocb;

...

/* Set up the AIO request */

bzero( (char *)&my_aiocb, sizeof(struct aiocb) );

my_aiocb.aio_fildes = fd;

my_aiocb.aio_buf = malloc(BUF_SIZE+1);

my_aiocb.aio_nbytes = BUF_SIZE;

my_aiocb.aio_offset = next_offset;

/* Link the AIO request with a thread callback */

my_aiocb.aio_sigevent.sigev_notify = SIGEV_THREAD;

my_aiocb.aio_sigevent.notify_function = aio_completion_handler;

my_aiocb.aio_sigevent.notify_attributes = NULL;

my_aiocb.aio_sigevent.sigev_value.sival_ptr = &my_aiocb;

...

ret = aio_read( &my_aiocb );

}

void aio_completion_handler( sigval_t sigval )

{

struct aiocb *req;

req = (struct aiocb *)sigval.sival_ptr;

/* Did the request complete? */

if (aio_error( req ) == 0) {

/* Request completed successfully, get the return status */

ret = aio_return( req );

}

return;

}

在清单 6 中,在创建自己的 aiocb 请求之后,我们使用 SIGEV_THREAD 请求了一个线程回调函数来作为通知方法。


然后我们将指定特定的通知处理程序,并将要传输的上下文加载到处理程序中(在这种情况中,是个对 aiocb请求自己的引用)。


在这个处理程序中,我们简单地引用到达的 sigval 指针并使用 AIO 函数来验证请求已经完成。



回页首

对 AIO 进行系统优化

proc 文件系统包含了两个虚拟文件,它们可以用来对异步 I/O 的性能进行优化:

· /proc/sys/fs/aio-nr 文件提供了系统范围异步 I/O 请求现在的数目。


· /proc/sys/fs/aio-max-nr 文件是所允许的并发请求的最大个数。


最大个数通常是 64KB,这对于大部分应用程序来说都已经足够了。



回页首

结束语

使用异步 I/O 可以帮助我们构建 I/O 速度更快、效率更高的应用程序。


如果我们的应用程序可以对处理和 I/O *** 作重叠进行,那么 AIO 就可以帮助我们构建可以更高效地使用可用 CPU 资源的应用程序。


尽管这种 I/O 模型与在大部分 Linux 应用程序中使用的传统阻塞模式都不同,但是异步通知模型在概念上来说却非常简单,可以简化我们的设计。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/585663.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-12
下一篇 2022-04-12

发表评论

登录后才能评论

评论列表(0条)

保存