K折交叉验证时使用:
KFold(n_split, shuffle, random_state)
参数:n_split:要划分的折数
shuffle: 每次都进行shuffle,测试集中折数的总和就是训练集的个数
random_state:随机状态
from sklearn.model_selection import KFold
kf = KFold(5, True, 10) X, Y = loda_data('./data.txt')
for train_index, test_index in kf.split(X):
print('训练集:{}'.format(train_index)
print('测试集:{}'.format(test_index)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)