标准正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。
标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
标准正态分布函数是“常态分布”,又名高斯分布,正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。正态分布有两个参数,即期望(均数)μ和标准差σ,σ的平方为方差。
标准正态分布函数的性质:
1、密度函数关于平均值对称。
2、函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
3、函数曲线的反曲点为离平均数一个标准差距离的位置。
4、平均值与它的众数以及中位数同一数值。5、95.449974%的面积在平均数左右两个标准差的范围内。
标准正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的作用
1、函数的作用是把重复的文件写成一个通用文本供给我们使用,也可以把剩下的文件代码独立放在一起。
2、我们工作时把工具箱准备好,然后下次用的时候直接带着使用就好了,这里的工具指的就是函数。
3、变量比函数。
定义函数的两种形式
1、第一种无掺函数
def self_max():
x, y = 10, 20
if x >y:
print(x)
else:
print(y)
self_max()
2、第二种有掺函数 (有多少掺数必须写入多少掺数。)
def self_max(x, y):
if x >y:
print(x)
else:
print(y)
self_max(100,500)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)