关于原根的存在性及个数(Primitive Root Theorem)

关于原根的存在性及个数(Primitive Root Theorem),第1张

关于原根的存在性及个数(Primitive Root Theorem)

我在RSA学习总结的第三部分关于Mille-Rabin素数测试的正确性证明里需要用到此定理,由于证明太长,故另开一章于此。


(为啥我说话突然文绉绉了Orz,可能是这周辩论打多了)

结论是对素数p,modulo p的原根存在,个数为与ø(p-1),modulo p2的原根个数为(p-1)ø(p-1)个

对奇素数p,modulo p^n的原根存在,个数为pn-2(p-1)ø(p-1) (n>=3)

首先证明对任意素数p,modulo p的原根存在

以下是证明思路(符号的意思在第二张图,完整证明里有)

知道了modulo p^2下Primitive root存在后可以推广至p^n

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/587838.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-12
下一篇 2022-04-12

发表评论

登录后才能评论

评论列表(0条)

保存