空间任意选定一点O,过点O作三条互相垂直的数轴Ox,Oy,Oz,它们都以O为原点且具有相同的长度单位。这三条轴分别称作x轴(横轴),y轴(纵轴),z轴(竖轴),统称为坐标轴。
它们的正方向符合右手规则,即以右手握住z轴,当右手的四个手指x轴的正向以Π/2角度转向y轴正向时,大拇指的指向就是z轴的正向。这样就构成了一个空间直角坐标系,称为空间直角坐标系O-xyz。定点O称为该坐标系的原点。与之相对应的是左手空间直角坐标系。
坐标系的几点性质介绍:
1、坐标平面内的点与有序实数对一一对应。
2.、一三象限角平分线上的点横纵坐标相等。
3、二四象限角平分线上的点横纵坐标互为相反数。
4、一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。
5、y轴上的点,横坐标都为0。
6、x轴上的点,纵坐标都为0。
7、坐标轴上的点不属于任何象限。
8、一个关于x轴对称的点横坐标不变,纵坐标变为原坐标的相反数。反之同样成立。
x轴(横轴),y轴(纵轴),z轴(竖轴)。
在使用三坐标时,会设置x,y,z轴,其实这三个轴就是立体空间的三个方向,即横竖纵三轴,一般情况下常规定义x为横轴,y为纵轴,z为竖轴。
相关内容:
取定空间直角坐标系O-xyz后,就可以建立空间的点与一个有序数组之间的一一对应关系。
设点M为空间的一点,过点M分别作垂直于x轴、y轴和z轴的平面。设三个平面与x轴、y轴和z轴的交点依次为P、Q、R,点P、Q、R分别称为点M在x轴、y轴和z轴上的投影。又设点P、Q、R在x轴、y轴和z轴上的坐标依次为x、y、z,于是点M确定了一个有序数组x,y,z。
平面直角坐标系有两个坐标轴,其中横轴为X轴(x-axis),取向右方向为正方向;纵轴为Y轴(y-axis),取向上为正方向。
扩展资料
平面直角坐标系(rectangular coordinate system)是指在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴,垂直的数轴叫做Y轴,X轴Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
传说:
有一天,笛卡尔(Descartes 1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条直线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a, b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)