什么是旋转抛物面

什么是旋转抛物面,第1张

旋转抛物面是指抛物线旋转180°所得到的面。

数学上的抛物线就是同一平面上到定点(焦点)的距离与到定直线(准线)的距离相等的点的集合 。抛物面是二次曲面的一种。抛物面有两种:椭圆抛物面和双曲抛物面。椭圆抛物面在笛卡儿坐标系中的方程为:

双曲抛物面在笛卡儿坐标系中的方程为:

抛物面性质

当a = b时,曲面称为旋转抛物面,它可以由抛物线绕着它的轴旋转而成。它是抛物面反射器的形状,把光源放在焦点上,经镜面反射后,会形成一束平行的光线。反过来也成立,一束平行的光线照向镜面后,会聚集在焦点上。

椭圆抛物面的参数方程为:

x方+y方=z/2和x方+y方=4x其中两个变量是系数相同的二次方,第三个变量只有一次方,就是抛物面旋转方程。平面解析几何中抛物线方程就是y??=2px,这里把y??换成两个变量的平方和,x换成第三个变量就是空间的了。如x方+y方=z方形式的三个变量都有平方的,就不可能是抛物面旋转方程。就是圆柱面旋转方程或球面方程,或双曲面,椭球面等

x=0时,y^2=2pz.

绕z轴旋转,旋转半径R^2=2pz

在xoy平面上,轨迹是O(0,0)为圆心,半径R^2=2pz的圆

即x^2+y^2=2pz


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5890935.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-05
下一篇 2023-03-05

发表评论

登录后才能评论

评论列表(0条)

保存