经过前面的介绍现在我们都知道,一行一行的数据是存放在数据页里的,所以接下来我们该分析一下数据页的结构了。之前介绍过,每个数据页,实际上是默认有16kb的大小,那么这16kb的大小就是存放大量的数据行吗?明显不是的,其实一个数据页拆分成了很多个部分,大体上来说包含: 文件头、数据页头,最小记录和最大记录、多个数据行、空闲空间、数据页目录、文件尾部。下面我们来看一张图:
简单来说,就是平时我们创建的那些表,其实都有一个表空间的概念,在磁盘上都会对应着“表名.ibd”这样的一个磁盘数据文件。所以在物理层面,表空间就是对应一些磁盘上的数据文件。有的表空间,比如系统表空间可能对应的是多个磁盘文件,我们自己创建的表对应的表空间可能就是对应了一个“表名.ibd”数据文件。
在表空间的磁盘文件里会有很多的数据页,但是如果一个表空间包含了太多数据页的话就不便于管理,所以在表空间里又引入了一个 的概念,英文就是extent,一个数据区对应着连续的64个数据页,每个数据页是16kb,所以一个数据区是1mb,然后256个数据区被划分为一组。
对于表空间而言,它的第一组数据区的第一个数据区的前3个数据页都是固定的,里面存放了一些描述性的数据。比如fsp_hdr这个数据页,它里面就存放了表空间和这一组数据区的一些属性。ibuf_bitmap数据页,里面存放的是这一组数据页的所有insert buffer的一些信息。inode数据页,这里也存放了一些特殊信息。
我们现在先不去具体了解它们是干什么的,只要知道第一组数据区的第一个数据区的前3个数据页,都是存放一些特殊信息的。然后这个表空间里的其它各组数据区,每一组数据区的第一个数据区的头两个数据页都是存放特殊信息的,比如xdes数据页就是用来存放这一组数据区的一些相关属性的,其实就是很多描述这组数据区的东西。下面我们通过一张图来看一下表空间的存储结构。
1、linux *** 作系统的存储系统软件层原理分析以及IO调度优化原理
简单来说,linux的存储系统分为 VFS层、文件系统层,Page Cache缓存层,通用Block层、IO调度层、Block设备驱动层、Block设备层 ,如下图:
最后IO完成调度之后,就会决定哪个IO请求先执行,哪个IO请求后执行,此时可以执行的IO请求就会交给Block设备驱动层,最后经过驱动把IO请求发送给真正的存储硬件,也就是Block设备层。硬件设备完成IO读写 *** 作,最后就把响应经过上面的层级反向依次返回,最终MySQL可以得到本次IO读写 *** 作的结果。
今天我们来看看多个事务对缓存页里的同一条数据同时进行更新或者查询,此时会产生哪些问题?这里实际会涉及到 脏写、脏读、不可重复读、幻读, 四中问题。
这个脏写的话,它的意思是说有两个事务,事务A和事务B同时在更新一条数据,事务A先把它更新为A值,事务B紧接着就把它更新为B值。事务A是先更新的,它在更新之前,这行数据的值为NULL,所以此时事务A的undo log日志大概是这样的:更新之前这行数据的值为NULL,主键为XX 。
那么此时事务B更新完了数据的值为B,结果此时事务A突然回滚了,那么就会用它的undo log日志去回滚。此时事务A一回滚,直接就会把那行数据的值更新回之前的NULL值。所以对于事务B看到的场景,就是自己明明更新了,结果值却没了,这就是 脏写。
假设事务A更新了一行数据的值为A,此时事务B去查询了一些这行数据的值,看到的值是A,然后事务B拿着刚查询到的A值去处理各种业务。但是此时不幸的事情发生了,事务A突然回滚了,导致它刚才更新的A值没了,此时那行数据的值回滚为NULL值。这就是所谓的 脏读。 它的本质是事务B去查询了事务A修改过的数据,但是此时事务A还没有提交,事务A随时会回滚导致事务B查询了一个不存在的值。
接着我们来看一下 的问题,假设我们有一个事务A开启了,在这个事务A里会多次对一条数据进行查询。然后另外有两个事务,一个是事务B,一个是事务C,它们都是对一条数据进行更新的。假设缓存页里一条数据原来的值是A值,此时事务A开启之后,第一次查询这条数据,读取到的是A值。接着事务B更新了那行数据的值为B,同时提交事务,然后事务A第二次查询该行数据,此时查到的是事务B修改过的值B 。接着事务C更新了那行数据的值为C,同时提交事务,然后事务A第三次查询该行数据,此时查到的是事务C修改过的值C值。
那么上面的场景有什么问题呢?其实要说没问题也是可以的,毕竟事务B和C都提交事务了。但是要说有问题也是可以的,就是事务A可能第一次查询到的是A值,那么它可能希望的是在事务执行期间,如果多次查询数据,都是同样的一个A值。但是该场景下,A值明显不是可重复读的。
这种情况算不算一个问题呢?其实这是根据你的业务决定的。有的业务要的是可重复读,而有的业务却需要不可重复读。
假设一个事务A先发送一条SQL语句,里面有一个条件,要查询一批数据出来,比如“select * from table where id >10”,类似这种SQL,它一开始查询出了10条数据。然后事务B往表里插入了几条数据,而且事务B还提交了。此时事务A再次查询,由于事务B插入了几条数据,导致这次它查询出来了12条数据。同样的SQL语句,两次的查询结果却不一样,所以开始怀疑自己是不是出现了幻觉?导致刚才幻读了?这就是幻读一词的由来。
在SQL标准中规定了4种事务隔离级别,就是说多个事务并发运行的时候,互相是如何隔离的,从而避免一些事务并发问题。这4种级别包括了: read uncommitted(读未提交)、read committed(读已提交)、repeatable read(可重复读)、serializable(串行化) 。
第一个read uncommitted隔离级别是不允许发生脏写的。也就是说,不可能两个事务在没提交的情况下去更新同一行数据的值,但是在这种隔离级别下,可能发生脏读、不可重复读、幻读。所以一般来说,是没有人做系统开发的时候把事务隔离级别设置为读未提交这个级别的。
第二个是read committed隔离级别,也就是俗称的RC级别,这个级别不会发生脏写和脏读。也就是说,别的事务没提交的情况下修改的值,你是绝对读不到的。但是,可能会发生不可重复读和幻读问题。
第三个是repeatable read隔离级别,也就是俗称的RR级别,就是可重复读级别。这个级别下,不会发生脏写、脏读、不可重复读的问题。事务一旦开启,多次查询一个值,会一直读到同一个值。但是它会发生幻读的问题。
最后一个隔离级别,就是serializable级别,这种级别,根本不允许多个事务并发执行,只能串行执行,所以不可能有幻读问题。但是这种级别一般除非脑子坏了,否则不可能设置这种级别。
MySQL默认设置的事务隔离级别都是RR级别的,而且MySQL的RR级别是可以避免幻读发生的。
下面的命令可以修改MySQL的默认事务隔离级别:
另外,给大家一个彩蛋,假设你在开发业务系统的时候,比如用spring里的@Transaction注解来做事务这块,假设某个事务你就是有点手痒,想搞成RC级别,那么没问题,在@Transaction注解里是有一个isolation参数的,里面是可以设置事务隔离级别的,具体的设置方式如下:
@Transaction(isolation=Isolation.DEFAULT),默认的就是DEFAULT值,这个就是MySQL默认支持什么隔离就是什么隔离级别。但是你可以手动改成其它的隔离级别,比如,isolation = Isolation.READ_COMMITTED级别,此时你就可以读取到其它事务已提交的数据。
简单来说,我们每条数据其实都有两个隐藏字段,一个是trx_id,一个是roll_pointer,这个trx_id就是最近一次更新这条数据的事务id,roll_pointer就是指向了你更新这个事务之前生成的undo log,关于undo log之前都讲过了。
举个例子,假设有一个事务A(id=50),插入了一条数据,那么此时这条数据的隐藏字段以及指向的undo log如下图所示:
插入的这条数据的值是A,因为事务A的id是50,所以这条数据的trx_id就是50,roll_pointer指向一个空的undo log,因为之前这条数据是没有的。接着有一个事务B修改了一下这条数据,把值改成了B,事务B的id是58,那么此时更新之前会生成一个undo log记录之前的值,然后会让roll_pointer指向这个实际的undo log回滚日志,如下图所示:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)