术式之后皆为逻辑,一切皆为需求和实现。希望此文能从需求、现状和解决方式的角度帮大家理解隔离级别。
隔离级别的产生
在串型执行的条件下,数据修改的顺序是固定的、可预期的结果,但是并发执行的情况下,数据的修改是不可预期的,也不固定,为了实现数据修改在并发执行的情况下得到一个固定、可预期的结果,由此产生了隔离级别。
所以隔离级别的作用是用来平衡数据库并发访问与数据一致性的方法。
事务的4种隔离级别
READ UNCOMMITTED 未提交读,可以读取未提交的数据。READ COMMITTED 已提交读,对于锁定读(select with for update 或者 for share)、update 和 delete 语句, InnoDB 仅锁定索引记录,而不锁定它们之间的间隙,因此允许在锁定的记录旁边自由插入新记录。 Gap locking 仅用于外键约束检查和重复键检查。REPEATABLE READ 可重复读,事务中的一致性读取读取的是事务第一次读取所建立的快照。SERIALIZABLE 序列化
在了解了 4 种隔离级别的需求后,在采用锁控制隔离级别的基础上,我们需要了解加锁的对象(数据本身&间隙),以及了解整个数据范围的全集组成。
数据范围全集组成
SQL 语句根据条件判断不需要扫描的数据范围(不加锁);
SQL 语句根据条件扫描到的可能需要加锁的数据范围;
以单个数据范围为例,数据范围全集包含:(数据范围不一定是连续的值,也可能是间隔的值组成)
1. 数据已经填充了整个数据范围:(被完全填充的数据范围,不存在数据间隙)
整形,对值具有唯一约束条件的数据范围 1~5 ,
已有数据1、2、3、4、5,此时数据范围已被完全填充;
整形,对值具有唯一约束条件的数据范围 1 和 5 ,
已有数据1、5,此时数据范围已被完全填充;
2. 数据填充了部分数据范围:(未被完全填充的数据范围,是存在数据间隙)
整形的数据范围 1~5 ,
已有数据 1、2、3、4、5,但是因为没有唯一约束,
所以数据范围可以继续被 1~5 的数据重复填充;
整形,具有唯一约束条件的数据范围 1~5 ,
已有数据 2,5,此时数据范围未被完全填充,还可以填充 1、3、4 ;
3. 数据范围内没有任何数据(存在间隙)
如下:
整形的数据范围 1~5 ,数据范围内当前没有任何数据。
在了解了数据全集的组成后,我们再来看看事务并发时,会带来的问题。
无控制的并发所带来的问题
并发事务如果不加以控制的话会带来一些问题,主要包括以下几种情况。
1. 范围内已有数据更改导致的:
更新丢失:当多个事务选择了同一行,然后基于最初选定的值更新该行时,
由于每个事物不知道其他事务的存在,最后的更新就会覆盖其他事务所做的更新;
脏读: 一个事务正在对一条记录做修改,这个事务完成并提交前,这条记录就处于不一致状态。
这时,另外一个事务也来读取同一条记录,如果不加控制,
第二个事务读取了这些“脏”数据,并据此做了进一步的处理,就会产生提交的数据依赖关系。
这种现象就叫“脏读”。
2. 范围内数据量发生了变化导致:
不可重复读:一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,
却发现其读出的数据已经发生了改变,或者某些记录已经被删除了。
这种现象就叫“不可重复读”。
幻读:一个事务按相同的查询条件重新读取以前检索过的数据,
却发现其他事务插入了满足其查询条件的新数据,这种现象称为“幻读”。
可以简单的认为满足条件的数据量变化了。
因为无控制的并发会带来一系列的问题,这些问题会导致无法满足我们所需要的结果。因此我们需要控制并发,以实现我们所期望的结果(隔离级别)。
MySQL 隔离级别的实现
InnoDB 通过加锁的策略来支持这些隔离级别。
行锁包含:
Record Locks
索引记录锁,索引记录锁始终锁定索引记录,即使表中未定义索引,
这种情况下,InnoDB 创建一个隐藏的聚簇索引,并使用该索引进行记录锁定。
Gap Locks
间隙锁是索引记录之间的间隙上的锁,或者对第一条记录之前或者最后一条记录之后的锁。
间隙锁是性能和并发之间权衡的一部分。
对于无间隙的数据范围不需要间隙锁,因为没有间隙。
Next-Key Locks
索引记录上的记录锁和索引记录之前的 gap lock 的组合。
假设索引包含 10、11、13 和 20。
可能的next-key locks包括以下间隔,其中圆括号表示不包含间隔端点,方括号表示包含端点:
(负无穷大, 10] (10, 11] (11, 13] (13, 20] (20, 正无穷大) 对于最后一个间隔,next-key将会锁定索引中最大值的上方,左右滑动进行查看
"上确界"伪记录的值高于索引中任何实际值。
上确界不是一个真正的索引记录,因此,实际上,这个 next-key 只锁定最大索引值之后的间隙。
基于此,当获取的数据范围中,数据已填充了所有的数据范围,那么此时是不存在间隙的,也就不需要 gap lock。
对于数据范围内存在间隙的,需要根据隔离级别确认是否对间隙加锁。
默认的 REPEATABLE READ 隔离级别,为了保证可重复读,除了对数据本身加锁以外,还需要对数据间隙加锁。
READ COMMITTED 已提交读,不匹配行的记录锁在 MySQL 评估了 where 条件后释放。
对于 update 语句,InnoDB 执行 "semi-consistent" 读取,这样它会将最新提交的版本返回到 MySQL,
以便 MySQL 可以确定该行是否与 update 的 where 条件相匹配。
总结&延展:
唯一索引存在唯一约束,所以变更后的数据若违反了唯一约束的原则,则会失败。
当 where 条件使用二级索引筛选数据时,会对二级索引命中的条目和对应的聚簇索引都加锁;所以其他事务变更命中加锁的聚簇索引时,都会等待锁。
行锁的增加是一行一行增加的,所以可能导致并发情况下死锁的发生。
例如,
在 session A 对符合条件的某聚簇索引加锁时,可能 session B 已持有该聚簇索引的 Record Locks,而 session B 正在等待 session A 已持有的某聚簇索引的 Record Locks。
session A 和 session B 是通过两个不相干的二级索引定位到的聚簇索引。
session A 通过索引 idA,session B通过索引 idB 。
当 where 条件获取的数据无间隙时,无论隔离级别为 rc 或 rr,都不会存在间隙锁。
比如通过唯一索引获取到了已完全填充的数据范围,此时不需要间隙锁。
间隙锁的目的在于阻止数据插入间隙,所以无论是通过 insert 或 update 变更导致的间隙内数据的存在,都会被阻止。
rc 隔离级别模式下,查询和索引扫描将禁用 gap locking,此时 gap locking 仅用于外键约束检查和重复键检查(主要是唯一性检查)。
rr 模式下,为了防止幻读,会加上 Gap Locks。
事务中,SQL 开始则加锁,事务结束才释放锁。
就锁类型而言,应该有优化锁,锁升级等,例如rr模式未使用索引查询的情况下,是否可以直接升级为表锁。
就锁的应用场景而言,在回放场景中,如果确定事务可并发,则可以考虑不加锁,加快回放速度。
锁只是并发控制的一种粒度,只是一个很小的部分:
从不同场景下是否需要控制并发,(已知无交集且有序的数据的变更,MySQL 的 MTS 相同前置事务的多事务并发回放)
并发控制的粒度,(锁是一种逻辑粒度,可能还存在物理层和其他逻辑粒度或方式)
相同粒度下的优化,(锁本身存在优化,如IX、IS类型的优化锁)
粒度加载的安全&性能(如获取行锁前,先获取页锁,页锁在执行获取行锁 *** 作后即释放,无论是否获取成功)等多个层次去思考并发这玩意。
mysql的4种事务隔离级别,如下所示:
1、未提交读(Read Uncommitted):允许脏读,也就是可能读取到其他会话中未提交事务修改的数据。
2、提交读(Read Committed):只能读取到已经提交的数据。Oracle等多数数据库默认都是该级别 (不重复读)。
3、可重复读(Repeated Read):可重复读。在同一个事务内的查询都是事务开始时刻一致的,InnoDB默认级别。在SQL标准中,该隔离级别消除了不可重复读,但是还存在幻象读,但是innoDB解决了幻读。
4、串行读(Serializable):完全串行化的读,每次读都需要获得表级共享锁,读写相互都会阻塞。
相关简介
MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统) 应用软件之一。
MySQL是一种关系型数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
MySQL所使用的 SQL 语言是用于访问数据库的最常用标准化语言。MySQL 软件采用了双授权政策,分为社区版和商业版,由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择 MySQL 作为网站数据库。
MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,属于Oracle旗下产品,是最流行的关系型数据库管理系统之一。
端口是3306。
表很多时,使用linux脚本,需要根据需要修改一下:
和创建一样,可以加上 if exists
可两篇文章:
如:
用于在已有的表中添加、删除或修改列。
添加 ADD
或
默认是添加到最后,但可以指定位置。FIRST :添加最前
AFTER 字段名> :添加指定字段之后
例子:
删除 DROP
修改 MODIFY 主要修改原列的类型或约束条件 同样可以用 FIRST 和 AFTER 字段名> ,代表的是修改到哪里。
修改字段名 CHANGE
可以把表2的数据复制到表1中,但 不能复制约束性条件 。
单行
多行,注意 只有一个VALUES :
不写 (行1, 行2...) 这一部分的话,默认一一对应
除了以上方法外,还可以用SET为每一行附上相应的值。
假如没有筛选的话,就给全部都修改了。可以用 WHERE 筛选。
假如 没有筛选的话,就给全部删除了 。相当于清空。
清空
先把表删除,然后再建一个。与 DELETE FROM 相比, TRUNCATE 的效率更快,因为 DELETE FROM 是把记录逐条删除的。
查询执行的顺序
FROM -->WHERE -->SELECT -->GROUP BY -->HAVING -->ORDER BY -->LIMIT
注意
当数据很大,上百万的时候,使用LIMIT ... OFFSET ..的方式进行分页十分浪费资源且耗时长。最好是结合WHERE使用,如:
REGEXP 使用正则表达进行匹配。 查询时,需要搭配WHERE或HAVING使用 。
两个表之间有交集且要用到两个表的数据时,可以使用内连接查询。
LEFT JOIN 关键字从左表(table1)返回所有的行,即使右表(table2)中没有匹配。如果右表中没有匹配,则结果为 NULL。
用法:
RIGHT JOIN 关键字从右表(table2)返回所有的行,即使左表(table1)中没有匹配。如果左表中没有匹配,则结果为 NULL。 把LEFT JOIN的表1、表2调换顺序,就是REGHT JOIN 。
FULL OUTER JOIN 关键字只要左表(table1)和右表(table2)其中一个表中存在匹配,则返回行. 相当于结合了 LEFT JOIN 和 RIGHT JOIN 的结果。
但 MySQL中不支持 FULL OUTER JOIN 。
即SELECT嵌套。
IN 一个查询结果作为另一个查询的条件。 如:
EXISTS 用于判断查询子句是否有记录,如果有一条或多条记录存在返回 True,否则返回 False。True时执行。 如:
索引的本质是一种排好序的数据结构。利用索引可以提高查询速度。
常见的索引有:
MySQL通过外键约束来保证表与表之间的数据的完整性和准确性。 外键的使用条件:
外键的好处:可以使得两张表关联,保证数据的一致性和实现一些级联 *** 作。
对已有的两个表增加外键 比如:主表为A,子表为B,外键为aid,外键约束名字为a_fk_b
为子表添加一个字段,当做外键
为子表添加外键约束条件
假如删除记录报错: [Err] 1451 -Cannot deleteorupdatea parent row: aforeignkeyconstraintfails (...)
这是因为MySQL中设置了foreign key关联,造成无法更新或删除数据。可以通过设置 FOREIGN_KEY_CHECKS 变量来避免这种情况。 第一步:禁用外键约束,我们可以使用: SETFOREIGN_KEY_CHECKS=0 第二步:删除数据 第三步:启动外键约束,我们可以使用: SETFOREIGN_KEY_CHECKS=1 查看当前FOREIGN_KEY_CHECKS的值,可用如下命令: SELECT @@FOREIGN_KEY_CHECKS
使用 UNION 来组合两个查询,如果第一个查询返回 M 行,第二个查询返回 N 行,那么组合查询的结果一般为 M+N 行。
每个查询必须包含相同的列、表达式和聚集函数。
默认会去除相同行,如果需要 保留 相同行,使用 UNION ALL 。
只能包含一个 ORDER BY 子句,并且必须位于语句的最后 。
内置函数很多, 见: MySQL 函数
我们一般使用 START TRANSACTION 或 BEGIN 开启事务, COMMIT 提交事务中的命令, SAVEPOINT : 相当于设置一个还原点, ROLLBACK TO : 回滚到某个还原点下
一般的使用格式如下:
开启事务时, 默认加锁
根据类型可分为共享锁(SHARED LOCK)和排他锁(EXCLUSIVE LOCK)或者叫读锁(READ LOCK)和写锁(WRITE LOCK)。
根据粒度划分又分表锁和行锁。表锁由数据库服务器实现,行锁由存储引擎实现。
除此之外,我们可以显示加锁
加锁时, 如果没有索引,会锁表,如果加了索引,就会锁行
InnoDB默认支持行锁,获取锁是分步的,并不是一次性获取所有的锁,因此在锁竞争的时候就会出现死锁的情况
解决方法:
即ACID特性:
由于并发事务会引发上面这些问题, 我们可以设置事务的隔离级别解决上面的问题.
MySQL的默认隔离级别(可重复读)
查看当前会话隔离级别
方式1
方式2
设置隔离级别
主从集群的示意图如下:
主要涉及三个线程: binlog 线程、 I/O 线程和 SQL 线程。
同步流程:
由于MySQL主从集群只会从主节点同步到从节点, 不会反过来同步, 所以需要读写分离
读写分离需要在业务层面实现 , 写数据只能在主节点上完成, 而读数据可以在主节点或从节点上完成
索引是帮助MySQL高效获取数据的排好序的数据结构
MySQL的索引有
推荐两个在线工具:
简单来说, B树是在红黑树(一个平衡二叉树)的基础上将一个节点存放多个值, 实现的, 降低了树的高度, 每个节点都存放索引及对应数据指针, 同一层的节点是递增的
而B+树在B树的基础上进行优化, 非叶子节点存放 子节点的开始的索引, 叶子节点存放索引和数据的指针, 且叶子节点之间有双向的指针
如下示意图:
不同的引擎, 主键索引存放的数据也不一样, 比如常见的 MyISAM 和 InnoDB
MyISAM 的B+树叶子节点存放表数据的指针, InnoDB 的B+树叶子节点存放处主键外的数据
其他的:
即多个列组成一个索引, 语法:
由于联合索引的B+树的结构, 根据列建立, 所以我们的查找条件也要根据索引列的顺序( where column1=x, column2=y,columnN... ), 否则会全表扫描
如果你对列进行了 (+,-,*,/,!) , 那么都将不会走索引。
OR 引起的索引失效
OR 导致索引是在特定情况下的,并不是所有的 OR 都是使索引失效,如果OR连接的是 同 一个字段,那么索引 不会失效 , 反之索引失效 。
这个我相信大家都明白,模糊搜索如果你前缀也进行模糊搜索,那么不会走索引。
这两种用法,也将使索引失效。另 IN 会走索引,但是当IN的取值范围较大时会导致索引失效,走全表扫描, 见: MySQL中使用IN会不会走索引
不走索引。
走索引。
所以设计表的时候, 建议不可为空, 而是将默认值设置为 "" ( NOT NULL DEFAULT "" )
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)