正三棱锥定义

正三棱锥定义,第1张

正三棱锥定义如下:

正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。

1、在几何学上,棱锥又称角锥,是三维多面体的一种,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。

2、直三棱锥和正三棱锥的区别是直三棱锥的四个面都是直角三角形,正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥,正三棱锥不等同于正四面体。

3、高中立体几何中常见的几何体有柱体、锥体、台体和球体,在大多数学生眼中球体是最简单的几何体,因为它的定义是圆的定义的拓展,高中数学教材给出来的知识点只有两个公式:V球=43πR3和S球=4πR2(R是球的半径).但是如果到了高三大综合训练时,就会觉着与球体有关的问题,特别是几何体的外接球问题,一点都不简单,甚至有些学生把它归到了难题里边。

性质:

1.底面是等边三角形。

2.侧面是三个全等的等腰三角形。

3.顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。

4.常构造以下四个直角三角形:

(1)斜高、侧棱、底边的一半构成的直角三角形;(含侧棱与底边夹角)

(2)高、斜高、斜高射影构成的直角三角形;(含侧面与底面夹角)

(3)高、侧棱、侧棱射影构成的直角三角形;(含侧棱与底面夹角)

(4)斜高射影、侧棱射影、底边的一半构成的直角三角形。

两相邻侧面所成角相等的三棱锥是一种特殊的正三棱锥,或者说是正四面体,只要底面是正三角形的直三棱锥就是正三棱锥。

正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。正三棱锥不等同于正四面体,正四面体必须每个面都是全等的等边三角形。

性质

1、 底面是等边三角形。

2、侧面是三个全等的等腰三角形。

3、顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5946138.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-09
下一篇 2023-03-09

发表评论

登录后才能评论

评论列表(0条)

保存