反三角函数值是:arcsin0=0,arcsin(1/2)=π/6,arcsin(√2/2)=π/4,arcsin(√3/2=π/3,arcsin1=π/2,atccos1=0。
arcsin0=0
arcsin(1/2)=π/6
arcsin(√2/2)=π/4
arcsin(√3/2)=π/3
arcsin1=π/2
atccos1=0
arccos(√3/2)=π/6
arccos(√2/2)=π/4
arccos(1/2)=π/3
arccos0=π/2
arctan0=0
arctan(√3/3)=π/6
arctan(1)=π/4
arctan(√3)=π/3
arctan0=π/2
常见的三角函数:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
反三角函数值指的是:反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角的值。
反三角函数是一种数学术语,为限制反三角函数为单值函数。反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了【arc+函数名】的形式表示反三角函数,而不是f-1(x)。
⑴正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。arcsin x表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。【图中红线】
⑵余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。arccos x表示一个余弦值为x的角,该角的范围在[0,π]区间内。【图中蓝线】
⑶正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。arctan x表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。【图中绿线】
注释:【图的画法根据反函数的性质即:反函数图像关于y=x对称】
反三角函数主要是三个:
y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用深红色线条;
y=arccos(x),定义域[-1,1] , 值域[0,π],图象用深蓝色线条;
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用浅绿色线条;
y=arccot(x),定义域(-∞,+∞),值域(0,π),暂无图象;
sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx
证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得
其他几个用类似方法可得
cos(arccos x)=x,arccos(-x)=π-arccos x
tan(arctan x)=x,arctan(-x)=-arctanx
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)